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Preface
1  INTRODUCTION

High spatial resolution data provide a novel data source for addressing environmental 
questions with an unprecedented level of detail. These remote sensing data are a result 
of significant advances in image acquisition platforms and sensors, including satellite, 
manned aircraft, and unmanned aerial vehicle (UAV) platforms. Furthermore, the 
recent development of commercially operated satellite platforms with high spatial 
resolution sensors allows for the collection of a large amount of images at regular 
time intervals, with relatively large footprints (i.e., image swathes). For example, the 
WorldView series, with the WorldView-1 satellite launched on September 18, 2007, 
and WorldView-4 launched on November 11, 2016, are capable of resolving objects 
at 31 cm in the panchromatic band and at 1.24 m in 4 (or 8)-band multispectral over a 
13.1-km-wide swath. For a specific study site, these image data can be easily searched 
and acquired at a reasonable cost through service companies, such as DigitalGlobe. 
In addition, the recent proliferation of UAVs has made it possible to collect images at 
spatial and temporal scales that would be impossible using traditional platforms. Many 
recent works have focused on collecting imagery using UAV-equipped multispectral, 
hyperspectral, and thermal sensors as well as laser scanners at centimeter resolutions.

High (meters) and ultra-high (centimeters) spatial resolution images open a 
door for fine-scale analysis of objects at the Earth’s surface. A number of scientific 
journal articles have highlighted the usefulness of high spatial resolution remote 
sensing, including the use of remote sensing in studying the physical environmental 
system, the human system, and the interactions between them. Examples in physical 
environmental studies include fine-scale forest inventory (Mora et al., 2013), wetland 
plant community identification (Zweig et al., 2015), grassland mapping (Lu and He, 
2017), and water resources (Debell et al., 2016). In terms of the human system, high 
spatial resolution remote sensing has been used to study urban impervious surfaces 
(Yang and He, 2017), public health (Hartfield et al., 2011), and epidemics (Lacaux 
et al., 2007). As for human-environment interactions, high-resolution remote sensing 
has been used for land degradation (Wiesmair et al., 2016), precision farming (Zarco-
Tejada et al., 2013), water and air pollution (Yao et al., 2015), and natural hazards 
(e.g., earthquakes, typhoons, floods, landslides) (Joyce et al., 2009).

This increased spatial resolution exasperates the intraclass variability found in an 
image. For example, in a grassland scene, vegetation leaves, gaps, shadows, and stems 
are all visible in the pixels of a high spatial resolution image. While this information 
is potentially useful for mapping purposes, the added details in a high-resolution 
image pose challenges for image segmentation and feature selection. Furthermore, the 
number of detectable entities or classes increases with spatial resolution. Traditional 
information extraction techniques may not operate well at high spatial resolutions due 
to large data volume and heterogeneous spectral information (Wulder et al., 2004), 
spurring the need for the development of innovative image processing techniques. To 
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x Preface

this end, techniques operated in the spatial domain have the potential for successfully 
extracting information from high spatial resolution images (Culvenor, 2003).

To effectively utilize information contained in high spatial resolution imagery, 
some key questions must be addressed, including

	 1.	What are the challenges of using new sensors and new platforms?
	 2.	What are the cutting-edge methods for fine-level information extraction 

from high spatial resolution images?
	 3.	How can high spatial resolution data improve the quantification and 

characterization of physical-environmental or human patterns and processes?

This book intends to address the above-mentioned questions in three separate 
parts: (1) data acquisition and preprocessing, (2) algorithms and techniques, and (3) 
case studies and applications. This chapter aims to provide an overview of the book 
and an outline of each chapter. Section 2 discusses the opportunities and challenges of 
using new sensors and platforms and of using high spatial resolution remote sensing 
data. It also introduces the chapters that address recent developments in platforms, 
sensors, and data with a focus on UAVs. Section 3 addresses the issues related to high 
spatial image processing and introduces cutting-edge methods. Section 4 summarizes 
state-of-the-art high spatial resolution applications and demonstrates how high spatial 
resolution remote sensing can support the extraction of detailed information needed 
in different systems. Readers should bear in mind that platforms, sensors, data, 
methods, and applications are related to each other. Although we intend to organize 
the chapters based on their primary focuses, we also acknowledge that the authors 
of each chapter may tell a complete story, sometimes from introducing an image 
acquisition system all the way to a specific application.

2  IMAGE ACQUISITION SYSTEMS AND PREPROCESSING

An image acquisition system, which includes a platform and one or more sensor(s), 
plays an important role in the sense of how efficiently the areas under study can be 
surveyed. Traditional remote sensing platforms include satellite, aircraft, and space 
shuttle platforms, while a more recent addition is the UAV remote sensing system. 
Each of these platforms has its own technological and operational specifications 
(Table 1). Satellite platforms can survey large geographical areas, but their spatial 
resolutions are relatively coarse, the sensors are fixed, and the image acquisition plan 
is out of the end user’s control. In other words, most high spatial resolution satellites 
can only acquire data after they have been programmed or paid to do so (Joyce et al., 
2009). One exception is that during a major disaster event, satellite operators usually 
schedule imagery collection without needing an approved request.

Different from satellite platforms, the use of both manned and unmanned 
aircraft can be tailored to meet the needs of an end user, and acquisition sensors and 
parameters can be adjusted to ensure the best possible imagery. In terms of surveying 
area, manned aircraft can survey in kilometer squares with ideal sensors, while UAVs 
are only good for studying relatively small areas due to their limited battery life. 
However, UAVs have attracted increased attention in recent years due to their high 
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flexibility, low operational costs, and ability to collect very high spatial resolution 
images. In comparison with manned aircraft, which can mount large sensors, UAVs 
with limited payloads can only carry compatible sensors. With the advancement in 
sensing and computing technologies, sensors have become more compatible. It is 
hoped that multiple sensors, such as multiple cameras and/or LiDAR sensors, can 
be mounted on UAVs in the near future (Asner et al., 2012). However, aerial image 
acquisitions involve additional cost and efforts for image preprocessing because they 
are a function of the camera or sensor optics. The image preprocessing efforts include, 
but are not limited to, obtaining ground control data, performing specific radiometric 
correction, and image mosaicking. Clearly, the optimal platform depends not only on 
the size of the study area and the objective of study, but also on the available budget 
and resources.

Many studies have reviewed challenges in relation to UAV image collection and 
preprocessing (e.g., Whitehead and Hugenholtz, 2014). It is almost impossible to 
process UAV images using the existing image preprocessing tools because they were 
developed mainly for well-calibrated platforms and sensors. A UAV acquires images 
with inconstant scales, large overlaps, variable image orientations, and high amounts of 
relief displacement (Hardin and Jensen, 2011). In spite of these challenges, UAV remote 
sensing systems have proved useful for many different applications (see Chapters 1, 2, 
and 3). In Chapter 1, UAV remote sensing technology with high spatial and temporal 
resolutions is considered critical for high-throughput phenotyping and precision 
agriculture. In the field experiments, the authors used a variety of UAV platforms 

TABLE 1
Typical High Spatial Resolution Platforms and Their Technological and 
Operational Specifications

Platforms
Parameters Satellite Airborne UAV

Footprint >100 km2 10–100 km2 1–10 km2

Sensor Multispectral
Hyperspectral
Thermal
Microwave

Multispectral
Hyperspectral
Thermal
Microwave
LiDAR

Multispectral
Hyperspectral
Thermal
Microwave
LiDAR

Spatial resolution 0.3 cm to 10 m 0.5 to 5 m Centimeters

Temporal resolution Day Hours Minutes

Cost of the platform Very costly Costly Affordable

Cost of a scene >$2000 ∼$1000 ∼$200

Image preprocessing Procedures/parameters 
available

Procedures/parameters 
unavailable

Procedures/parameters 
unavailable

Source:	 Adapted from Toth, C., Jóźków, G. 2016. ISPRS Journal of Photogrammetry and Remote Sensing. 
115: 22–36.
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and sensors, including PrecisionHawk Lancaster 5 with a Nikon 1 J4 visual camera, 
Tuffwing UAV Mapper with a Sony A6000 visual camera, and DJI Matrice 100 UAV 
with a MicaSense RedEdge multispectral camera. Many considerations were applied 
during image acquisition and preprocessing steps. The authors conclude that UAV has 
great potential for obtaining imagery that can provide timely and accurate information 
for decision support, but further research regarding UAV engineering configurations 
that enable navigation, and communication and data transfer capabilities are needed. 
The authors point out a variety of issues related to UAV imagery preprocessing, 
diagnostic analysis of environmental and plant conditions, and artificial intelligence 
for decision support. Similarly, Chapters 2 and 3 also describe the need to build a 
UAV-based imaging system, but with a focus on hyperspectral imagers. The author 
highlights the need for a UAV-based hyperspectral system, factors to be considered 
when building and operating a UAV-based hyperspectral system, and the methods 
for preprocessing UAV-based hyperspectral data.

Other high spatial resolution data from a variety of sensors, including optical, 
LiDAR, and synthetic-aperture radar (SAR), are introduced in Chapter 4, 5, and 6 
with a focus on data preparation and preprocessing. In particular, Chapter 4 provides a 
brief overview of data preparation needed for integrating high-resolution multispectral 
and LiDAR data through a case study of mapping coastal wetlands. Using these data, 
the authors quantified important structural metrics for different wetland compositional 
types, and suggested that the combined use of LiDAR, multispectral remote sensing, and 
terrain metrics achieved the best model performance. The authors suggest new research 
directions to address the challenges often experienced in the integration of LiDAR and 
multispectral data. Chapter 5 discusses multiview image matching steps, and introduces 
advanced image matching techniques. In addition, multiview image matching accuracy 
and related challenges, limitations, and opportunities are also discussed. Chapter 6 
focuses on high-resolution radar data acquisition, preprocessing, and processing. The 
chapter starts with a nonmathematical presentation of the fundamentals of SAR that are 
relevant to the high-resolution imaging of natural environments, followed by basic SAR 
image preprocessing, image processing, four SAR satellite systems, and case studies of 
SAR application for identifying manmade and natural features.

3  HIGH SPATIAL RESOLUTION IMAGE PROCESSING

The availability of enormous amounts of high spatial resolution remote sensing data 
has necessitated the development of appropriate image processing methods. This 
book presents a few algorithms and workflows, including structure from motion 
(SfM) techniques, stepwise procedures, spectral unmixing, object-based image 
classification, and convolutional neural networks to extract information from different 
high spatial resolution data. SfM reconstructs 3-D geometry and camera position 
from a sequence of 2-D images captured from multiple viewpoints (Ullman, 1979). 
This algorithm was developed decades ago, but has recently become popular for 
processing UAV remote sensing images. Using a consumer-grade DJI Phantom 3 
Professional Quadcopter with a RGB camera, the authors in Chapter 7 collected UAV 
images from multiple positions and analyzed them using various SfM programs to 
establish a workflow for generating reliable estimates of wood chip volume.
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While optical image processing exploits mostly spectral properties, in the case of 
airborne laser scanning (ALS) data, methods should be developed to take advantage 
of both range and spectral information from a single source. Chapter 8 proposes 
a stepwise procedure including land-cover classification, tree crown segmentation, 
and regression modeling to examine the feasibility of multispectral ALS data for 
tree carbon stock estimation. The proposed workflow provides a benchmark for 
processing emerging multispectral ALS data in land-cover mapping.

Linear spectral unmixing has captured growing attention for its ability to 
extract fine-scale features (Yang et al., 2014). When endmembers are identified in 
a 2-D spectral mixing space, all pixels in the images can be processed as a linear 
combination of the identified endmembers. However, the choice of an appropriate 
triangle structure (from a spectral mixing space) is yet to be automated. To address 
this gap, Chapter 9 introduces an indicator that is capable of selecting suitable feature 
space objectively, and thus holds great potential for automated high-resolution remote 
sensing image unmixing.

High spatial resolution image classification has generally advanced from pixel-based 
to object-based approaches, with the latter delineating real-world objects composed of 
many pixels (Wulder et al., 2004). The objects thus add several new possible layers to 
image analysis ranging from spectral descriptive statistics to textural and geometric 
information. However, object-based image analysis also introduces a number of 
analytical issues to consider. In the image segmentation step, an inappropriate scale 
can negatively affect classification results, and therefore researchers must decide which 
segmentation scale to apply to the image (Ma et al., 2015). Chapter 10 provides a review 
on five scale-selection methods, and compares their advantages and disadvantages 
using WorldView-2 imagery. The authors suggest that scale-selection methods be 
explored before choosing an optimal scale to apply for segmenting objects.

Computer vision aims to mimic the human visual system for automatic image 
extraction, analysis, and interpretation. Chapter 11 summarizes the relevant computer 
vision technologies with a focus on convolutional neural networks. Specifically, the 
authors discuss how computer vision can be adapted to work in ecological studies, 
and introduce experiments to assess the effectiveness of convolutional networks 
in scenarios similar to the camera trap scenario. The chapter ends with several 
considerations for the use of these techniques in ecological studies.

4  CASE STUDIES AND APPLICATIONS

Using various high spatial resolution data, Part 3 of this book covers a range of unique 
applications. For grasslands, UAV-based multispectral images were used in Chapter 
12 to investigate vegetation biophysical and biochemical properties in a tall grassland, 
while manned-aircraft-based hyperspectral images were used in Chapter 13 to invert 
a radiative transfer model for mapping leaf chlorophyll in a mixed grassland. Chapter 
12 demonstrates that canopy leaf area index (LAI) and chlorophyll content can be 
accurately retrieved from UAV-acquired imagery using spectral indices. Chapter 13 
concludes that the inverted model is able to estimate leaf chlorophyll content for green 
canopies with high accuracy, but overestimates both mixed green and brown canopies 
and mixed green and brown canopies with exposed soil.
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Both Chapter 14 and 15 delineate wetlands, with Chapter 14 focusing on wetland 
mapping using GeoEye-1 images, and Chapter 15 characterizing geomorphic and 
biophysical properties of wetlands with airborne LiDAR. Chapter 14 indicates that 
wetland complexity, including varying sizes and shapes and the aquatic vegetation 
communities found within, can be detected using high spatial resolution optical 
imagery. Airborne LiDAR has gained popularity in wetland science research in 
the past two decades and Chapter 15 reviews this expanding field with examples 
from a wide range of wetland ecosystem types. Using a case study conducted in a 
northern peatland complex, the authors demonstrate concepts related to the accuracy 
of LiDAR-derived ground surface elevations, as well as geomorphic and hydrologic 
analysis.

When dealing with karst, one of the most fragile and heterogeneous landscapes, 
high spatial resolution imagery can provide detailed information that aids in the 
exploration of mechanisms of vegetation dynamics. In Chapter 16, vegetation cover 
in a degraded karst area was extracted using multispectral high spatial resolution 
ALOS imagery. The authors conclude that high spatial resolution imagery, when 
processed with the multiple endmember spectral mixture analysis approach, is able 
to successfully extract fine-scale features in karst areas.

Chapter 17 uses IKONOS multispectral and panchromatic images to estimate 
cherry orchard acreage. High spatial resolution imagery combined with object-based 
image analyses was found to be effective in estimating the cherry orchard acreage, 
within a ±3.1% error margin of the U.S. Department of Agriculture’s census data. The 
author suggests using a UAV multispectral system to collect fine-resolution images 
because it may provide detailed information on fruit crop yield and/or potential 
diseases that may adversely affect orchard trees.

5  SUMMARY

High spatial resolution remote sensing data have proven useful for the extraction of 
ground features at a level not possible with medium- or coarse-resolution images. 
However, until now, the novelty of UAV platforms and sensor configurations, high cost 
of commercial-satellite-based data, inconsistent revisit times, and underdeveloped 
image processing methods have limited the usefulness of high spatial resolution 
images for large area applications at an operational level, not to mention real-time 
assessment and monitoring. The best practice in high spatial resolution remote 
sensing data acquisition and processing has yet to be developed.

Spatial resolution, image swath, spectral features, and temporal revisit are all 
critically important in determining whether a particular platform and/or sensor or 
data processing algorithm is capable of providing specific assessment and monitoring 
capabilities. It often takes at least 24 hours, or even several days, before a satellite 
operator can respond to an image acquisition request. This is because response time 
is determined by the position of the satellite within its orbit, as well as by weather 
conditions in the case of optical sensors (Joyce et al., 2009). Other than satellite 
platforms, both manned and unmanned airborne platforms are capable of acquiring 
images for real-time mapping and monitoring, but are limited to local scales. Further, 
data preprocessing, processing, and delivery systems are currently being developed 
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for manned and unmanned systems and their usefulness is yet to be validated. It 
is expected that in the near future, end users will be able to receive near-real-time 
images and mapping products, from manned or unmmaned systems, for an area or 
a feature of interest.

No single platform, sensor, data type, or processing technique will work for all 
cases. Multisource data integration, multiresolution exploitation, and multitemporal 
analysis will likely be key future lines of research (Zhang, 2010) for real-time 
assessment and monitoring. The application-driven strategy has been encouraged in 
past decades, with the hope of finding an effective solution for a specific problem. 
However, a data-driven analysis is possible in the era of big data, and one may achieve 
better real-time assessment and monitoring using multisource remote sensing big 
data.

The chapters in this book provide a snapshot of cutting-edge high spatial resolution 
remote sensing image collection, preprocessing, processing, and applications. More 
advances in these areas can be expected in the near future. We hope that the collection 
of chapters in this book will provide a useful benchmark for the high spatial resolution 
remote sensing community and inspire more studies that would address important 
scientific and technical challenges in current and future high spatial remote sensing 
data acquisition, processing, and applications.
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4 High Spatial Resolution Remote Sensing

1.1  INTRODUCTION

Crop yield (production per acre) has increased up to eightfold over more than a century 
of concerted scientific research into agricultural systems and genetic improvement 
of crops (Brummer et al. 2011; Hall and Richards 2013). The global population is 
expected to increase to over 9 billion people by 2050, and increases in the standard of 
living will require more food, fiber, and fuel (Godfray et al. 2010; FAO 2017). There 
will also be new constraints from climate change, decreased availability of fertilizer 
and irrigation water inputs, and external pressure from consumers, companies, and 
governments to produce agricultural products in a more sustainable way to address 
food quality and security issues (Godfray et al. 2010; Tilman et al. 2011; Challinor 
et  al. 2014; FAO 2017). This will require new developments and utilization of 
agricultural and information technologies.

Given the advent of unmanned aerial systems (UASs) and high-resolution 
multispectral imagery, managers and agricultural specialists have new tools and 
information for optimizing management decisions and enabling precision agriculture 
solutions. Enabling technologies include global positioning systems (GPSs), high-
resolution multispectral and hyperspectral sensors, geographic information system 
(GIS) technology, and field sensor and network monitoring capabilities. In addition, 
these information technologies also support improved information production and 
decision support capabilities using knowledge representation, artificial intelligence, 
and visualization techniques. Collectively, such enabling geospatial technologies 
permit mapping and monitoring of crops (Hunt et al. 2010; Torres-Sánchez et al. 
2014, 2015), weed assessment and management (Armstrong et al. 2007; Gray et al. 
2008; López-Granados 2010; Eddy et al. 2013; Peña et al. 2013; Torres-Sánchez et al. 
2013), plant stress detection (Hunt et al. 2010; Zarco-Tejada et al. 2012), and many 
other precision agricultural applications throughout every aspect of preplanting 
through postharvest (Herwitz et al. 2004; Blackburn 2006; Castaldi et al. 2017). 
Nevertheless, although the potential for geospatial technologies to significantly 
impact agricultural research and management practices is high, numerous concepts 
and issues must be addressed to generate diagnostic and actionable information that 
can be relied upon for scientific inquiry, management, and optimization problem 
solving. There are numerous issues associated with UAS data acquisition strategies, 
image preprocessing, geospatial data management, information production, 
information synthesis, and the development and evaluation of agricultural decision 
support systems that are specific to agriculture.

Perhaps the greatest agriculture challenge is understanding the complex interactions 
between plants and their agricultural environment. Understanding these interactions 
may enable optimal management of plant growth by controlling input factors to 
maximize crop yield, sustainability, safety, and nutrition. Using objective information 
on these and other measurable factors, and applying site-specific management, is the 
basis of precision agriculture. Another major challenge is to breed and select the best 
genetics in a cultivar to meet crop production goals. Automated and semiautomated 
methods of plant phenotypes are termed high-throughput phenotyping (HTP), which 
seeks to use sensors deployed on various types of platforms to conduct measurements 
rapidly so that larger populations and/or more replicates can be measured and 
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assessed. Consequently, developing and evaluating UAS technology and high-
resolution imaging systems can significantly assist in precision agriculture and high-
throughput phenotyping activities to help managers make better decisions and assist 
plant breeders and geneticists to screen more varieties more quickly and accurately, 
and with less cost. Even more exciting is the possibility of allowing plant breeders to 
observe traits or phenotypes that have never before been possible, such as the utility 
of UAS technology to temporally screen large fields and estimate plant growth curve 
trajectories.

Although UAS technology and the collection of high-resolution imagery can 
help address primary agricultural challenges, numerous concepts and research 
directions must be further investigated and formalized to address a variety of 
scientific and engineering issues associated with the development and evaluation 
of these technologies. Consequently, the primary objective of this chapter is to 
report on selected aspects of our multidisciplinary experiences involving the Texas 
A&M AgriLife Unmanned Aerial Systems Project at the field research facility near 
College Station, Texas, where we have addressed key issues in utilizing geospatial 
technologies. We accomplish this by providing fundamental background information 
about phenotyping, precision agriculture, and geospatial technology issues in 
agriculture. We then provide information about the study area and go into details 
about challenges involved with flight planning, image acquisition, data preprocessing, 
and information extraction. We then discuss challenges and issues related to crop 
mapping, plant stress detection, and weed management.

1.2  BACKGROUND

1.2.1  Phenotyping

Crop yields need to increase at a rate greater than 2% per year to ensure adequete 
food supply to meet projected human populations under a changing climate (Godfray 
et al. 2010; Cairns et al. 2013; Gleadow et al. 2013). Current yield increase rates are 
consistently lower than projected and average annual crop yield goals are not met in 
much of the land currently used for cereal production (Ray et al. 2013).

Systematic improvements in crop yield and quality are typically due to new 
technology adoption of crop production methods (agronomic approaches) and 
the development of cultivars that are genetically more productive (plant breeding 
approaches). While the exact contribution attributed to each approach varies with 
each crop, on average these two approaches have contributed equally to increases 
in productivity (Duvick 2005). While these increases have been impressive, further 
increases will require more information, creativity, and integration to achieve the 
same levels.

As a science, crop improvement is a relatively new endeavor with its nascent 
beginnings occurring in the early twentieth century with the rediscovery and 
application of Mendelian genetics (Acquaah 2014). From these early beginnings, 
genetic technologies have become economically feasible and provided logical 
solutions for many problems. These included molecular markers, gene isolation and 
transformation, and, more recently, DNA sequencing technology, which has made 
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genotyping of individual breeding lines feasible in large crop improvement programs 
(Acquaah 2014). Combining genotyping with incremental improvements in the 
breeding process, such as off-season nurseries (reduced cycle times), plot equipment 
(improved phenotypic data collection and accuracy), and statistical analysis techniques 
(improved interpretation of the data), crop improvement programs are poised to make 
greater strides (Acquaah 2014).

Application of these molecular genetic technologies was transformational, and new 
technologies have the potential to be even more transformational, but only if the genetic 
information can be analyzed in relation to large amounts of informative phenotypic 
data. Herein lies the current bottleneck in crop genetic improvement programs: 
Traditional methods of phenotyping simply do not allow the collection of accurate 
data in quantities to be informative at a transformational level. Plant breeding is often 
referred to as a “numbers game,” meaning that the more material evaluated increases 
the chances of finding the transformational genetic segregant. Consequently, methods 
that will allow breeding programs to phenotype larger breeding nurseries faster, more 
accurately, and repeatedly are essential to making these transformational changes 
(Furbank and Tester 2011). Furthermore, this phenotyping must be completed in field 
conditions to accurately identify which genotypes are the most efficient and which 
will allow crop improvement programs to effectively utilize the genetic technology, 
and to evaluate crop improvement methods in new and innovative ways.

Several approaches can be used to mitigate this bottleneck. For initial gene and 
trait discovery, greenhouse and growth chamber studies are useful for dissecting 
phenotypic traits because they minimize environmental effects. However, for traits 
of a quantitative nature, field phenotyping is essential to transcending the complex 
interactions between genetics, environment, and management that routinely occur 
in production systems. Consequently, field-based, high-throughput techniques, 
especially those that utilize remote sensing platforms, are the most promising 
new tool to assist in breaking this bottleneck in the crop improvement pipelines 
(Tester and Langridge 2010; Furbank and Tester 2011; Araus and Cairns 2014; 
Shi et al. 2016).

Application of these HTP systems could have several benefits. The first and most 
obvious is the rapid phenotyping of agronomically important traits. Examples of such 
traits include, but are not limited to, plant height, maturity, and biotic and abiotic stress 
tolerance. Currently, these traits are evaluated by individuals who walk through fields 
and make quantitative or qualitative measurements of individual plant genotypes. If this 
could be accomplished using HTP and image analysis, greater numbers of genotypes 
could be evaluated in a breeding cycle. The greater the number of individuals evaluated, 
the greater the potential to identify the most useful genetic segregants.

The second benefit is less obvious because it was not possible to apply in 
traditional crop improvement evaluation. Systematic evaluation of a single trait is 
rarely conducted in a breeding program due to the cost and time to collect the data. 
With remote sensing, however, this is very conceivable. For example, weekly plant-
height measurements on thousands of genotypes was not feasible for most programs, 
but methods involving photogrammetry or LiDAR remote sensing could be applied. 
Digital surface model data could be compiled to develop plant-height growth curves 
and delimit growth curves of different genotypes (Apelt et al. 2015). Plant scientists 
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have long known these capabilities exist, but have not had a feasible approach to 
measure them at an appropriate operational scale sufficient for crop improvement 
(Hoffmann and Rooney 2014).

Several approaches to remote sensing are actively being investigated in crop 
improvement programs. Ground-based systems are based on a tractor system or other 
ground vehicle that passes through the field collecting data from sensors attached to 
the equipment (Pauli et al. 2016). In short crops, ground-based systems (i.e., sensors 
mounted on farming equipment that passes through the field collecting data) have 
large sensor capacities and are effective provided that ground conditions do not limit 
movement through the crop and that repeated trips do not affect crop growth by 
soil compaction. UASs offer a greater range of coverage but are limited by weather 
conditions that affect flight and a smaller sensor payload. Ultimately, the capability 
of these systems to cover vast areas in a short period, as well as their ability to carry 
various payloads consisting of different sensors, makes them very appealing to crop 
scientists (Shi et al. 2016).

Once phenotypic data are collected using either system, a significant amount of 
data preprocessing is required to prepare data for analysis and the production of 
quantitative information that plant scientists and breeders can use to make decisions 
regarding the relative value of one genotype relative to another. Geospatial data 
preprocessing is not trivial because scientific and methodological issues must be 
taken into consideration (Shi et al. 2016). Currently, the use and application of both 
the hardware (platform and sensors) and software (data preprocessing, analysis, 
and visualization) are in their infancy. New approaches and technologies for data 
collection and processing are continually being developed and need to be rigorously 
evaluated.

Regardless of the potential of using geospatial technologies, crop improvement 
programs must first objectively evaluate these numerous aspects of UASs and remote 
sensing technologies before implementing them into the complexities of agricultural 
research. From a crop improvement perspective, the value of a measured trait can 
be assessed in two different ways. First, the measurements can be assessed for 
accuracy (i.e., the remotely measured trait is consistent with values as they have 
been traditionally measured). Second, the measurements can be assessed for relative 
accuracy (i.e., the actual numbers may not be consistent with traditional measurements 
but they are consistent relative to the other genotypes in the evaluation). In the second 
approach, the relative performance of any given genotype is consistent in ranking 
or relative utility. Most programs have baseline performance supplemented with 
relative performance to make decisions relative to advancement within the program. 
Consequently, both approaches are important, but, arguably, the latter method is most 
important in a crop breeding program because decisions must be made on whether 
individual genotypes are kept or eliminated from further evaluation.

Clearly, the application of remote sensing technologies to plant improvement 
programs is essential if transformational changes in productivity are to be 
accomplished. There remains a large amount of research to identify the best 
approaches for collecting, processing, and analyzing the data that can be generated. 
The expectation is that these technologies will aid the programs in screening existing 
traits faster and more accurately than currently possible, and they will elucidate 
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new traits or means of evaluating existing traits to be more informative to the crop 
improvement process.

1.2.2  Precision Agriculture

In today’s large-scale agricultural operations, farmers use tractors and specific 
implements (even aircraft in some cases) to apply inputs such as seed, water, fertilizer, 
and tillage across large fields that have tremendous spatial and temporal variability 
in soil conditions, crop health, weed and insect pressure, etc. This variability is often 
significant at a very fine spatial scale, meaning that two adjacent plants could need 
significantly different amounts of a particular input. Precision agriculture seeks to 
optimize farm management at the smallest scale possible. To be successful, precision 
agriculture requires three things: (1) sensors that collect data on position and field 
characteristics, (2) analytical capabilities that evaluate sensor data and provide 
decisions or decision support enabling optimization of inputs, and (3) equipment that 
enables varying the rate of inputs as field location changes. For example, multispectral 
sensors can be used to map the magnitude of reflectance in certain wavelengths 
indicative of nitrogen deficiency in a crop, and a spray application of nitrogen fertilizer 
could potentially apply the appropriate amount of fertilizer where needed. The 
constraints of precision agriculture optimization are to maximize economic output 
and minimize environmental risk. Reports of the benefits of precision agriculture 
have included, for example, major reductions in the amount of pesticide used on a 
field without significant reduction in crop yield. A recent example related to remote 
sensing (Yang et al. 2014) involves the mapping of a soil-borne fungal disease in 
cotton. Because of the tendency of this particular fungus to inhabit a consistent area 
of a given field, and because the effects of the disease are clearly evident in remote 
sensing images, mapping the incidence of the disease enables fungicide treatments 
in subsequent growing seasons to be limited to only the infected areas of the field. 
If the infected portion of a field is significant, precision agriculture in this case 
significantly lowers the cost for the farmer and the amount of fungicide applied (along 
with environmental risks).

Agriculture has benefited greatly from advances in computers and electronics, 
and many key enabling technologies in precision agriculture are based on these 
advances. The concept of precision agriculture took hold in the early days of civil 
access to the U.S. Department of Defense’s GPS, which, including the satellite assets 
of several other countries, is now commonly referred to as the Global Navigation 
Satellite System (GNSS). Access to the GNSS provides data on field position and 
time for any recorded field attribute. Coupled with computers and data-recording 
technologies, GNSS has enabled the mapping of field variability. The development 
of GISs—computer information systems adept at handling geographic data—has 
enabled mapping and analysis of field variability. Developments in sensors, both 
proximal and remote, have enabled mapping of more and more field characteristics. 
Developments in variable-rate technologies (VRTs) have enabled mechanized input 
applications to be varied in real time according to field position. Examples of currently 
available VRTs include variable-rate planters and fertilizer applicators. Advances 
in analytics like machine learning are enabling sophisticated characterization of 
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relationships between numerous field properties and key output metrics like crop 
yield. The “Internet-of-things in agriculture”—including stationary wireless sensor 
networks and ubiquitous sensors on field equipment coupled with wireless networks 
and cloud-based data storage and analysis—has provided vast amounts of data that 
provide the raw material for model development. Advances in automation are enabling 
real-time control of vehicles and implements in the field. UASs are now being used as 
remote sensing platforms to provide image data indicative of field variability. Fully 
autonomous robots are also being developed for the agriculture of tomorrow, and 
early versions are already finding use in high-value crops for harvesting and thinning 
fruits and vegetables.

In spite of the onslaught of enabling technologies, current agricultural systems 
and practices limit precision agriculture variations to management zones, which are 
typically contiguous multihectare areas within a field that are noticeably different 
from other areas of the field in some important, manageable characteristic like soil 
fertility. As technologies continue to improve, site-specific management will focus 
on increasingly smaller field zones such as 1 ha or even 1 m2. In the early days of 
GPS/GNSS, real-time position accuracy was on the order of 20 m, but advances 
in the technology such as real-time kinematic (RTK) differential correction have 
made it possible for equipment to determine field position to within 1 cm or so. This 
level of precision enables automated guidance systems for tractors and harvesters to 
maintain an extremely precise path. One result is that sensor data can be associated 
with precise field locations, even to the level of individual plants. The slowest aspect 
of precision agriculture to take hold is development of analytical capabilities. What is 
currently used is a combination of algorithms and intuition, but artificial intelligence 
has the potential to vastly improve precision agriculture analytics.

The numerous sensors now commonly aboard agricultural machinery, in 
combination with strictly sensing platforms like UASs, have plunged precision 
agriculture into the new realm of big data. With this change have come several 
questions that must be answered as data-centric agricultural technologies progress:

•	 Data ownership: If data are collected by numerous sensors on a farm, who 
owns the data?

•	 Data validity: How do we know the data being collected with all these 
sensors are accurate, have the right contextual information, have been 
maintained carefully, etc.?

•	 Data standardization: So many people are collecting and using data with 
so many types of devices and equipment, how can we make the data 
interchangeable?

•	 Data bandwidth: If we are collecting large volumes of data on-farm, how 
do we transmit the data to a location where they can be analyzed and 
converted to actionable information, particularly when considering that 
rural bandwidth is typically very limited?

•	 Model practicality: Are the analytical models being developed practical 
in terms of data availability and equipment capability to implement the 
decisions? For example, if we have a model that identifies on what day, at 
what location on a 1-m2 basis, how much irrigation water to apply to a field, 
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we cannot implement the prescription if we have an irrigation scheme that 
involves flood irrigation or a center-pivot system.

•	 Data availability: The volume of data and technological complexity in 
handling and analyzing it are such that users commonly struggle with 
major bottlenecks in the workflow of big data for farm-management 
decision-making.

Big data will have limited value in increasing farm productivity, profitability, and 
environmental risk reduction until there is a practical way to readily and reliably produce 
timely, actionable information from the data in common farm-level applications. New 
precision agriculture technologies like remote sensing, particularly with UASs, have 
created heretofore unseen capabilities to answer agricultural questions, but a remaining 
major difficulty, requiring a great deal of domain-specific expertise, is in knowing 
what questions to ask of the data. As all these capabilities improve, the potential 
to increase farm profit and environmental stewardship continues to grow. Precision 
agriculture has already significantly improved productivity and environmental risk 
mitigation, but the majority of the improvements remain to be made as the industry 
strives to transition from the scale of large management zones to individual plants.

1.2.3 G eospatial Technologies

An extensive amount of remote sensing literature highlights ongoing geospatial 
technology research to address challenges associated with agricultural research. 
Recent advancements in new configurations and specifications of UASs have 
permitted investigators to test the efficacy of utilizing UAS platforms to test data 
collection strategies for a multitude of applications (e.g., Hunt et al. 2010; Zhang 
and Kovacs 2012; Peña et al. 2013; Torres-Sánchez et al. 2013, 2014, 2015; Shi et al. 
2016; Yi 2016). A key theme in this research involves data collection to characterize 
extreme spatial and temporal variability of agricultural field conditions, required for 
phenotyping and quantitative characterization of plant growth and stress conditions.

Key research themes also involve the engineering aspects of demonstrating the 
proof of concept that GPS receivers, irradiance sensors, and new commercially 
available multispectral, hyperspectral, and LiDAR sensors can be mounted effectively 
to acquire accurate quantitative and image information. Other research addresses the 
need to configure UASs with Wi-Fi and other communication equipment to address 
the need of downloading large volumes of high-resolution imagery (e.g., Herwitz 
et al. 2004) and connecting UASs to high-speed data networks to address the needs 
for rapid information generation. The importance of this engineering-related research 
needs to be recognized because flight strategies, sensor payloads, and choice of 
sensors govern image sampling, data quality, preprocessing requirements, and the 
nature of image analysis. Classic examples include image sampling and fieldwork 
control to ensure quality geometric correction and radiometric calibration of imagery. 
Another example is sensor choice because the spectral response functions of sensors 
may not be appropriate for extracting accurate vegetation information caused by 
sampling in regions of the electromagnetic spectrum that record various matter/
energy interactions, thereby significantly reducing the scientific validation of using 
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vegetation indices (i.e., sampling red and near-infrared [NIR] reflectance in one 
image). Research has clearly revealed that it is not just a matter of acquiring data 
on a UAS, and that numerous issues must be accounted for related to preprocessing, 
analysis, and information synthesis (Hardin and Jensen 2011; Kelcey and Lucieer 
2012; Shi et al. 2016).

Image preprocessing also represents a very complex topic that needs to be 
understood. High spatial resolution images must be captured with a high degree of 
side-lap and overlap so that subscenes can be geometrically corrected and mosaicked. 
Ground control points (GCPs) are required to ensure a high degree of geometric 
fidelity. The number of GCPs becomes difficult to manage economically with an 
increase in the study area size and the lack of control points in subscenes. Our 
experience and those of others demonstrate that increasing the number of GCPs 
does not always lead to an increase in geometric accuracy and that field validation is 
often required (Hruska et al. 2012; Gómez-Candón et al. 2014).

Similarly, radiometric calibration is required to facilitate the use of vegetation 
indices and biophysical modeling, and enable temporal analysis. Unfortunately, many 
users are not aware of the need to account for sensor band calibration differences; 
irradiance variations caused by space-time image sampling, atmospheric factors, and 
topographic factors; and anisotropic reflectance variations caused by the architectural 
complexity of vegetation canopies. Rasmussen et al. (2016) addressed this last point by 
indicating that anisotropic reflectance conditions need to be accounted for in drawing 
conclusions about using vegetation indices for assessing crop responses to various 
kinds of treatments. The situation is exacerbated by commercially available sensors 
that have dynamic exposure control, and depending upon the flight data acquisition 
strategy, can result in imagery with banding and reflectance anomalies caused by 
surrounding highly reflective features (e.g., roads and buildings) that trigger changes in 
the exposure control settings. Dynamic exposure control complicates the radiometric 
calibration process and requires the imagery to be radiometrically calibrated before 
geometric correction and mosaicking. In addition, it requires strategic sampling 
of radiometric calibration panels in the field to facilitate empirical calibration 
approaches because irradiance varies spatially and temporally and governs radiance 
measurements obtained in the field by spectral radiometers. Calibration tarps can also 
be used, although there are limitations related to accounting for solar geometry and 
viewing angles (Moran et al. 2001).

Given the tremendous volume of multispectral and hyperspectral data that can be 
acquired over the growing season, geospatial research efforts have also focused on 
evaluating various information extraction approaches to assess, monitor, and map 
weeds, crops, and plant stress conditions. A strong research emphasis has been on 
evaluating the use of spectral bands and vegetation indices for the detection and 
discrimination of weeds and crops (e.g., Armstrong et al. 2007; Gray et al. 2008; 
López-Granados 2010; Eddy et al. 2013; Peña et al. 2013). Similarly, research involving 
hyperspectral remote sensing of plant pigments and stress (e.g., Haboudane et al. 
2004; Blackburn 2006, 2007; Feret et al. 2008; Jacquemoud et al. 2009; Sanches et al. 
2014) is critical for precision agriculture applications. Investigators are attempting 
to evaluate new data sets for spectral discrimination capabilities via more advanced 
processing techniques including absorption feature modeling (Jacquemoud and Baret 
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1990; Jacquemoud et al. 2009), wavelet analysis (Koger et al. 2003), object-oriented 
analysis (Ruiz et al. 2011; Torres-Sánchez et al. 2015), and various classification 
approaches (Armstrong et al. 2007; Gray et al. 2008; Siachalou et al. 2015; Haug 
and Ostermann 2016; Hernández-Hernández et al. 2016). Standardized and highly 
accurate quantitative and thematic information about plants and crop cover conditions 
remains elusive due to plant spectra similarity resulting in low classification accuracies 
and the complexities of interacting plant and environmental factors that limit causal 
diagnostic assessment of plant stress conditions.

Finally, there is a paucity of research on geospatial information synthesis to 
support agricultural optimization efforts and provide acceptable and reliable decision 
support. Although it has been recognized that various forms of geospatial data 
and information can be integrated into crop growth models that provide decision 
support (e.g., Thorp et al. 2008), advances in semantic modeling, spatial analysis, 
knowledge representation, artificial intelligence, and scientific visualization have 
not been effectively incorporated into prototype decision support systems. Such 
systems will inevitably incorporate UAS remote sensing technologies, geospatial 
information processing systems, field sensor and network systems, crop modeling 
systems, and visualization and communication functionality for stakeholders. In the 
meantime, UAS and remote sensing technologies need to be evaluated with respect to 
a multitude of issues that promote and/or limit diagnostic assessment of agricultural 
environments.

1.3  STUDY AREA

We discuss various issues resulting from our research at the Texas A&M University 
System Research Farm, located in Burleson County, Texas (Figure 1.1). The eastern 
border of the farm is the Brazos River, which separates the farm from Brazos County, 
Texas. Intermittent flooding of the Brazos over thousands of years has led to the high 
soil fertility that enabled row crop production at this site, despite large portions of the 
rest of both surrounding counties only being suitable for pasture land. The majority 
of the Brazos Bottom Research Farm exhibits a Ships clay loam soil, fertile with 
adequate water-holding capacity for typical row crop growth, when sufficient rainfall 
and some supplemental irrigation water is available. To the east of the river is located 
a small regional airport (Easterwood). At their closest, Easterwood’s runways are 
less than 5.90 km from the farm. All research plots, however, are greater than 7 km 
away from the airport. Texas A&M received authorization to fly UASs for research 
on agriculture and was one of the first research universities to do so.

The primary research and production crops include corn (Zea mays L.), cotton 
(Gossypium hirsutum L.), sorghum (Sorghum bicolor (L.) Moench), wheat (Triticum 
aestivum L.), cowpeas (Vigna unguiculata (L.) Walp.), and perennial grasses 
(various species), although other crops are also grown. Plot research that occurs on 
the farm consists of plant breeding and genetics experiments (consisting of testing 
many varieties and very small plots), agronomy, entomology, plant pathology, 
weed science (consisting of trials evaluating pest control options), and soil science 
experiments (typically measuring soil characteristics and their spatial effect on 
crop varieties).
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FIGURE 1.1  False-color composite (green, red, NIR) orthoimagery over the study area in 
Burlseon County, Texas. The Brazos River is on the right of the image, and the FM 60 highway 
runs left to right near the top of the image and crosses the Brazos River. Data collection was 
attempted in one UAS flight in route packs (RPs), outlined in yellow. The 6-in and 12-in 
4-band (blue, green, red, NIR) orthoimageries were acquired between January and February 
2013 during leaf-off conditions. The data set covers approximately 1963 km2 (758 mi2). Five 
local entities contributed funds to collect the new imagery using the High Priority Imagery and 
Data Sets (HPIDS) State contract administered by the Texas Natural Resource Information 
System (TNRIS) Strategic Mapping Program (StratMap).
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1.4  IMAGE ACQUISITION

The ability to conduct useful science under the framework of agricultural 
applications is not only dependent upon the collection of high-quality multi- and 
hyperspectral imagery, but also dependent upon platform and sensor issues in 
complex interdependent ways. This requires the proper matching and integration of 
air vehicle, sensors, mission design, and image preprocessing. Although commercial 
UASs are starting to be equipped with autopilots, sensors, and simple data processing 
software, they are often limited to only one sensor and frequently lack cross-platform 
integration expandability. Our work has focused on addressing issues using highly 
integrated fixed-wing and a multirotor unmanned aerial system that is customized 
for precision agriculture science. Numerous issues associated with flight operations 
and data capture need to be addressed.

1.4.1  Flight Operations and Sensors*

It is essential that interdisciplinary knowledge and trained pilots be used for image 
acquisition. This requires the coordination of research scientists to account for all 
the phases of research including data acquisition, image preprocessing, information 
extraction, fieldwork, image visualization, and decision support. Our multidisciplinary 
team includes the Colleges of Agriculture, Geosciences, and Engineering, with 
expertise in agricultural crop research, remote sensing and geospatial technology, 
and UAS flight operations. Collaboration among the experts in these fields ensures 
collection of high-quality imagery to meet research objectives.

Operation of UASs on Texas A&M University System property requires compliance 
with Texas A&M System Regulation 24.01.07 and the small UAS regulation (Part 
107) issued by the Federal Aviation Administration (FAA). To operate the controls of 
a small UAS under Part 107, the operator needs a remote pilot airman certificate with 
a small UAS rating, or be under the direct supervision of a person who holds such a 
certificate. All UAS operations were conducted by researchers who have their FAA 
remote pilot certification, and all UAS flight operations were conducted under Part 
107 requirements. These requirements include registration of the unmanned aerial 
vehicles (UAVs), operating in Class G airspace under daylight-only visual flight rules 
(VFR) conditions, maintaining visual line of sight of the UAV, and operating at a 
maximum altitude of 400 ft (∼122 m) above ground level (AGL).

Operationally, we have used two types of UAVs, fixed-wing and multirotor, to collect 
imagery of crops depending on the type of imagery needed to assess the condition 
of the crop field. A fixed-wing UAV uses a conventional wing design to generate 
lift through its forward motion. It generally flies at faster speeds (12–18 m/s) and 
higher altitudes (80–100 m), which provides more efficient coverage of larger areas. A 
fixed-wing UAV also has a longer endurance time, which is an essential capability for 
production-scale farms. Its design does require an open area for launching and landing 

*	Listing of commercial aerial platforms and sensors does not represent an endorsement from individual 
researchers or Texas A&M University, but are provided as examples of commercial equipment being 
evaluated for research purposes.

(c) ketabton.com: The Digital Library



15High-Resolution UAS Imagery in Agricultural Research

the UAV. The fixed-wing UAVs have robust design and durable construction, allowing 
for long hours of repeated use throughout a growing season.

A multirotor UAV uses individual rotors, or propellers, to generate lift for the 
vehicle. The number of rotors typically varies from three to eight, depending on 
the size of the UAV. It typically flies at slower speeds (5–7 m/s) and lower altitudes 
(20–80 m), which provides high-resolution images of small areas. The multirotor 
UAV usually has short flight times and limited payload capacity. With its vertical 
takeoff and landing capability, it can be operated in confined areas near obstructions, 
such as power lines, towers, or buildings. The autonomous flight software used in 
multirotor UAVs provides ease of use for the operator, while also providing fail-safe 
features to ensure that the operator does not violate regulations for flying in the 
National Airspace System.

We have used a variety of platforms and sensors including:

•	 PrecisionHawk Lancaster 5 with a Nikon 1 J4 visual camera: The 
PrecisionHawk Lancaster 5 (Figure 1.2a) is a fully autonomous UAS that 
automatically optimizes its flight plan to efficiently collect data. Equipped 
with plug-and-play sensors that can be exchanged in the field without 
configuration changes, the UAS can capture a variety of imagery.

•	 Tuffwing UAV Mapper with a Sony A6000 visual camera: The Tuffwing 
UAV Mapper (Figure 1.2b) is suitable for aerial mapping. The airframe 
was designed for the Pixhawk autopilot and can carry cameras including 
Sony mirrorless cameras, Canon S110, Sequoia, RedEdge Flir Vue, and 
SLANTRANGE. The UAS can stay in the air for about 45 minutes on 
a single charge, which will easily photograph 1 km2 while flying at an 
altitude of 100 m. The flying wing design flies better in strong winds than 
a traditional airplane.

•	 DJI Matrice 100 UAV with MicaSense RedEdge multispectral camera: The 
DJI Matrice 100 (Figure 1.2c) is an easy-to-fly multirotor UAV. It is equipped 
with a visual camera and can be configured with additional sensors, such 
as a multispectral or thermal camera. We have evaluated the MicaSense 
RedEdge sensor.

FIGURE 1.2  Select UASs evaluated in this study: (a) PrecisionHawk Lancaster 5 with Nikon 
1 J4 visual camera; (b) Tuffwing UAV Mapper with Sony A6000 visual camera; and (c) DJI 
Matrice 100 with MicaSense RedEdge multispectral camera.
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The traditional paradigm for most science applications of UASs has been that 
good science is a function of using good UASs and image sensor technologies. This 
paradigm is not completely correct because there can be significant gaps between 
commercial off-the-shelf (COTS) UASs and research-purposed unmanned vehicles 
that can carry and properly fly high-performance sensors. For customizable sensor 
integration, commercial UASs are starting to be equipped with autopilots, sensors, 
and simple data processing software, but can be limited to carrying only one sensor. 
Additionally, there is often a lack of cross-platform integration expandability. This 
gap negatively impacts the science objectives. Many factors related to UAS and sensor 
technologies must be considered to obtain quality imagery, and not appropriately 
addressing them has shown to be problematic.

1.4.2 D ata Acquisition Flight Strategies

Flight planning is an inherent process required for obtaining imagery (Valasek et al. 
2016, 2017). Seasonal prevailing wind direction and wind intensity, sensor-specific 
distance between passes, image overlap, image side-lap, GCP locations, and auto-
triggering cycle time are all crucial for quality data collection. The ultimate goal of 
flight path design is to ensure geographic coverage and improve mosaic quality under 
a restricted time frame. Flight time is restricted due to battery restrictions and the 
inherit nature of large fluctuations in outgoing thermal radiance. Image quality can be 
increased by reducing flight speed to reduce motion blur, reducing cross-wind paths, 
and increasing image overlap and side-lap.

1.4.2.1  Prevailing Wind
Prevailing wind intensity is crucial for both the reduction of cross-wind flight paths 
and the necessary speeds for takeoff and landing. Cross wind during flight reduces the 
accuracy of the waypoint tracking and increases the vehicle bank angle, and, as a result, 
increases the complexity of image mosaicking (Hardin and Jensen 2011). Due to the 
nature of UAS image acquisition flight environments, the vehicle usually carries payloads 
close to the maximum takeoff capacity and can have limited takeoff and landing space. 
Therefore, by carefully utilizing the seasonal prevailing wind, both the percentage of 
cross-wind flight paths and takeoff and landing distance can be minimized.

1.4.2.2  Waypoint Scheduling
Common issues with the standard and cross-stitch waypoint scheduling methods 
(Figure 1.2a and b) are that the high banking angles required for agile turns are not 
easily achieved with fixed-wing UASs. Additionally, agile maneuvers for fixed-wing 
UASs often result in missed GCPs as well as images with high banking angles, which 
leads to image distortion and poor mosaic results. A moving-box waypoint design 
method was developed from experience with collecting imagery from multiple flight 
tests, and provides the advantages of generally reducing the commanded banking 
angle and does not require large control surface maneuvers. With the moving-box 
method, waypoints are scheduled in a rectangular pattern that migrates along one 
direction, such that data are collected along the perimeter of the moving rectangle 
until coverage of the target area is achieved (Figure 1.2c). The pattern can be 
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scheduled either clockwise or counterclockwise according to the wind direction and 
is dependent on specific mission conditions and parameters. Issues with the moving-
box method lay in the imagery coverage of the center region.

Flight planning research activities indicate that, in order to create high-quality 
mosaics with minimal distortion, it is recommended to have at least 75% overlap 
between successive images and 60% side-lap between flying tracks. This is sufficient 
for flights with low wind measurements. However, in flight days with wind gusts 
above 6.7 m/s (15 mph), when the vehicle turns the cross winds induce the vehicle to 
bank above the banking threshold required for good imaging.

1.4.2.3  Waypoint Auto-Triggering
Several COTS autopilot software programs provide auto-triggering capability. 
Mission Planner provides triggering according to distance or triggering according to 
a fixed time interval. For fixed-wing imaging flights, the first approach often results in 
a skewed distribution of images throughout a flight path. This is the result of either the 
delay time in the autopilot system adjusting to wind gusts and therefore miscalculating 
the distance traveled, or reduction of speed when the vehicle is banking. Consequently, 
the fixed time interval auto-triggering (Figure 1.3c) is preferred.

1.5 � GEOMETRIC CORRECTION: UAS PHOTOGRAMMETRY

UAS photogrammetric practices begin with direct georeferencing, which can be defined 
as “the process of independently reconstructing the geometry of remotely sensed data 

(b)(a)

(d)(c)

FIGURE 1.3  Flight path patterns and planning. (From Shi et al. 2016. PLoS ONE, 11(7), 
e0159781. doi:10.1371/journal.pone.0159781.): (a) conventional flight path planning; (b) cross-
stitch flight path planning; (c) moving-box flight path planning; and (d) distribution of data 
collection locations with fixed time interval auto-triggering.
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by integration of remote sensing and navigation systems” (Perry 2009). This is generally 
accomplished with a GPS and an inertial measurement unit (IMU) onboard the UAS 
that records the position (latitude, longitude, and elevation from the GPS) and attitude 
(roll, pitch, and yaw from the IMU) of the UAS at the time of each image acquisition. 
The photogrammetric solution is usually supplemented with surveyed GCPs.

Few UAS GPS units reach the RTK positional error of ≤2 cm. Therefore, a 
network of GCPs is required to photogrammetrically generate orthoimages and 
digital elevation models (DEMs) with which reasonable measurements can be made. 
How many GCPs and where to locate them are questions currently answered with 
more art than science. For example, Benassi et al. (2017) used 12 GCPs for a field of 
0.2 km2, while Gillan et al. (2017) used three for plots of 0.0025 km2, and Glendell 
et al. (2017) used 8–36 GCPs for fields of 0.02–0.18 km2. The fields in this work 
ranged from 0.1 to 0.5 km2 and usually included three to five GCPs. Environmental 
factors can sometimes determine the usability of GCPs because they can be obscured 
due to floods, soil deposition, weeds, and ant mounds. Farm machinery, other off-road 
machinery, and wild animals can damage or destroy GCPs. As a result, a desired 
horizontal root-mean-squared error (RMSE) of less than 1 pixel can usually be 
achieved only with considerable manual intervention.

Environmental conditions, especially wind and cloud cover, affect accuracy. 
Benassi et al. (2017) made four flights under three regimes (12 GCPs, RTK only, 
and RTK with one GCP) over the same area and found an inverse correlation 
between wind speed and accuracy. Interestingly, RTK with one GCP was the most 
accurate, followed by RTK only, except for the flight with the highest winds (in that 
flight, the 12 GCP solution was best). This may be due to the effects of excessive roll 
and pitch, which can cause considerable errors in the generation of orthomosaics 
(Figure 1.4). There is likely some threshold value for roll and pitch below which 
errors are unobservable and beyond which errors are considerable and ruinous.

Wind-induced pitch and roll can be reduced through the use of gimballed mounts. 
However, these add considerable weight to the UAS and engineering or operational 
considerations may preclude their use. When such is the case, increased side- and 
overlap increases the likelihood that sufficient near-nadir images are acquired. 
Grenzdörffer et  al. (2008) found that a nominal side- and overlap of 60% could 
be insufficient, and found success with 80% for both. With higher overlap, images 
with excessive roll can be eliminated from the photogrammetric solution, and better 
orthomosaics and DEMs can be produced (Figure 1.5).

1.6  CROP ASSESSMENT AND MAPPING

An extensive amount of literature has focused on the use of vegetation indices 
for mapping and biophysical assessment of crops (e.g., Thenkabail et  al. 2000; 
Haboudane et al. 2002; Zarco-Tejada et al. 2003, 2004; Eddy et al. 2013; Peña et al. 
2013; Candiago et al. 2015; Kross et al. 2015). Mapping studies have focused on 
evaluating spectral and spatial features for discriminating between various crops and 
land-cover classes. A focus of such thematic mapping has been on the evaluation of 
new imagery and vegetation indices to increase the statistical separability of classes 
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in feature space to permit accurate classifications. A significant amount of research 
has also focused on evaluating various types of classification algorithms, including 
statistical and artificial neural computing classification approaches (Moreno et al. 
2014; Peña et al. 2014; Kumar et al. 2015; Haug and Ostermann 2016). Given the 
advent of new multi- and hyperspectral sensors, such empirical thematic mapping 
research will continue.

FIGURE 1.4  Orthoimage with overall subpixel RMS error, but with duplication and mislocation 
errors of ∼25 pixels due to inclusion of images with excessive aircraft roll. Note ghostly white 
and dark gray concrete tiles (GCPs). True locations given by black and white squares.

FIGURE 1.5  Orthoimages of RP 6E (see Figure 1.1) acquired on a windy day. Both have a 
reported RMS of around 1 pixel, but (b) had images with a pitch or roll greater than half the 
camera’s field of view removed from the solution.
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It is important to note, however, that crop and weed spectral reflectance patterns 
can be very similar (Figure 1.6), and a variety of environmental factors including 
topography, soil macro- and micronutrient status, and other abiotic and biotic 
factors can influence plant pigment concentrations, mesophyll cellular structure, 
leaf moisture, and other biochemical properties. Although it is widely recognized 
that hyperspectral data can be used to assess some of these conditions (Haboudane 
et al. 2004; Blackburn 2006, 2007; Feret et al. 2008; Sanches et al. 2014), empirical 
differentiation and mapping of crops and weeds can be extremely difficult to 
accomplish in a diagnostic fashion (Rasmussen et al. 2016). Consequently, we have 
been focusing on assessment of other analytical approaches that have diagnostic 
potential such as hyperspectral and spatial wavelet analysis.

Wavelet analysis characterizes the scale-dependent periodicity of a signal, which 
is superior to Fourier analysis because it both reveals the frequency components of 
the signal and identifies where a certain frequency exists in the spectrum. Wavelet 
analysis can be a very useful tool to study UAS hyperspectral imagery because it is 
capable of revealing trends, breakdown points, higher derivative discontinuities, and 
self-similarity in the reflectance pattern (Misiti et al. 1996).

Researchers have reported that unique spectral features can be extracted from 
wavelet coefficients, and that these features are useful in crop discrimination 
(Hsu and Tseng 2000), weed detection (Koger et al. 2003; Bossu et al. 2009), and 
assessment of crop nutrient stress levels (Liu et al. 2011). Wavelet coefficients can 
be calculated using the continuous wavelet transform (CWT) method or the discrete 
wavelet transform (DWT) method. The CWT is superior because it operates at every 
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FIGURE 1.6  Select crop and weed spectra sampled in the study area with a Spectral 
Evolution PSR-1100 field portable spectroradiometer with a leaf clip attachment. Data were 
collected in the field area (Figure 1.1) July through September 2016 except the corn spectra, 
which were collected March through April 2017.
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scale and the shifting of the wavelet function is continuous and smooth. The CWT 
is defined as:
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where a is scale, τ is position, and ψ∗ is the mother wavelet function. A wavelet 
coefficient is a function of both scale and position. Scale controls the compression 
or stretching of the wavelet and position controls the shifting of the wavelet 
function.

For a one-dimensional analysis of a hyperspectral curve, the CWT generates 
wavelet coefficients in wavelength-scale space and the magnitude of the coefficients 
indicates how closely the data correlate with the mother wavelet for a specific spectral 
band location. There is a correspondence between wavelet scales and frequency, such 
that a smaller scale corresponds to a compressed wavelet, which is high in frequency, 
while larger scales correspond to a stretched wavelet, representing lower frequency. 
Scale can be converted to frequency if needed.

Figure 1.7 shows the continuous wavelet transform on soybean (a crop) and water 
hemp (a weed) spectra. The coefficient plot provides a wavelength-scale view of 
the spectrum. After the transform, modulus maxima lines are extracted from the 
CWT coefficients at each scale, which highlight spectral features such as the green 
peak, red edge, and near-infrared absorptions. These features and potentially other 
features that we are developing have the potential to be used for diagnostic species 
classification. Nevertheless, more research is required to determine the degree to 
which numerous genetic, environmental, and managerial factors influence wavelet 
coefficient spectral features.

Another important approach for mapping and assessment of plant communities 
involves spatial analysis of plant architecture and canopy structure. UAS-based 
LiDAR systems can be used to assess plant architectural characteristics (e.g., 
Chisholm et al. 2013; Anthony et al. 2014; Grenzdörffer 2014), while image-based 
spatial features can provide valuable information regarding canopy texture and 
anisotropy.

We demonstrate this by characterizing the one-dimensional variation in 
reflectance for crop canopies for four different species. Specifically, we selected 
four transects, each over a soybean, cotton, sorghum, or corn field. Data from 
each transect were analyzed via wavelet analysis to characterize spatial patterns 
in reflectance (Figure 1.8). Different spatial scales (i.e., spatial frequency) relate to 
variations in canopy structure. Wavelet analysis reveals a unique spatial frequency 
pattern for soybeans and cotton compared to sorghum and corn, because these two 
crop groups have vastly different canopy structures (Figure 1.8). Because canopy 
structure changes over time in response to plant maturity, plant health, presence of 
weeds, and other environmental factors, a multitemporal wavelet analysis approach 
may have significant application related to biomass or crop yield estimation and 
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weed control. High-resolution imagery is required to better characterize plant and 
canopy structural patterns.

1.7  WEED ASSESSMENT

Weed competition is one of the major limiting factors to crop production (Zimdahl 
1999). Weeds compete with crops for critical resources such as water, nutrients, light, 

(a) 60
Soybean
Water hemp

50

40

30

20

10

0
400

(b) (c)

200

150

100

50

200

150

100

50

100

80

60

40

20

100

80

60

40

20

Modulus maxima (Soybean)

Modulus maxima (Water hemp)

CWT coefficients (Soybean)

CWT coefficients (Water hemp)

Wavelength (nm)
500 600 700 800 900 1000

Wavelength (nm)
500 600 700 800 900 1000

11.00

91.00
81.00
71.00
61.00
51.00
41.00
31.00
21.00

1.00

11.00

91.00
81.00
71.00
61.00
51.00
41.00
31.00
21.00

1.00

Sc
al

e (
C

W
T)

Sc
al

e (
C

W
T)

500 600 700
Wavelength (nm)

800 900 1000

Re
fle

ct
an

ce
 (%

)

FIGURE 1.7  Continuous wavelet analysis on soybean and water hemp. (a) Reflectance spectra 
of soybean and water hemp. (b) CWT coefficients, using Daubechies 3 as the mother wavelet. 
Color represents the magnitude of wavelet coefficients, where yellow is high magnitude. 
(c) Extracted modulus maxima lines.

(c) ketabton.com: The Digital Library



23High-Resolution UAS Imagery in Agricultural Research

2.
5

So
yb

ea
n

(a
)

(c
)

(b
)

(f
)

(d
)

a c

b
b′

d
d′

a′ c′
Co

tto
n

Co
rn

0.
01

2

0.
01

0.
00

8

0.
00

6

0.
00

4
0.

00
2

0

So
yb

ea
n

1.
5

1.
5

0.
5

0.
5

(e
) 2.

49
43

5

2.
27

60
9

2.
05

78
4

1.
83

95
8

1.
62

13
2

1.
40

30
7

1.
18

48
1

0.
96

65
59

0.
74

83
04

0.
53

00
49

0.
31

17
93

0
10

20
30 D
ist

an
ce

 (m
)

D
at

a 
se

le
ct

ed
 fo

r w
av

el
et

 an
al

ys
is

40
50

60
70

10

Spatial frequency [1/m]Spatial frequency [1/m]

D
ist

an
ce

 (m
)

D
ist

an
ce

 (m
) Co

tto
n

Co
rn

So
yb

ea
n

So
rg

hu
m

20
30

40
50

60
10

20
30

40
50

60

2.
55 21 1

0
50

10
0

15
0

20
0

25
0M

et
er

s

10
4

10
3 10

8

G
ra

ss
es

Co
tto

n

So
yb

ea
n

So
rg

hu
m

So
rg

hu
m

G
ra

ss
es

So
rg

hu
m

Co
tto

n

Co
rn

Co
tto

n

Co
tto

n

So
yb

ea
n

G
ra

ss
esSu

ga
rc

an
e

20
6

20
8

21
0

10
9

21
1

21
5

21
4

21
6

21
7

21
8

11
9

11
1

11
0

11
8

11
7

21
922
4

21
3

21
2

20
920

7

20
3

d d′ b a
c

b′ a′
c′

N

FI
G

U
R

E 
1.

8 
W

av
el

et
 a

na
ly

si
s 

fo
r 

ch
ar

ac
te

ri
zi

ng
 c

an
op

y 
st

ru
ct

ur
e 

w
it

h 
ne

ar
-i

nf
ra

re
d 

re
fle

ct
an

ce
 s

pa
ti

al
 v

ar
ia

ti
on

s 
fo

r 
so

yb
ea

n,
 c

ot
to

n,
 s

or
gh

um
, a

nd
 

co
rn

. (
a–

d)
 W

av
el

et
 c

oe
ffi

ci
en

t p
lo

ts
 o

f 
sp

at
ia

l f
re

qu
en

cy
 (

Y-
ax

is
, f

ro
m

 C
W

T
 a

na
ly

si
s,

 c
on

ve
rt

ed
 f

ro
m

 s
ca

le
) 

of
 th

e 
re

fle
ct

an
ce

 v
al

ue
 a

t a
 g

iv
en

 lo
ca

ti
on

 
at

 a
 d

is
ta

nc
e 

al
on

g 
th

e 
tr

an
se

ct
 (

X
-a

xi
s)

. C
ol

or
 r

ep
re

se
nt

s 
th

e 
m

ag
ni

tu
de

 o
f 

th
e 

w
av

el
et

 c
oe

ffi
ci

en
ts

 i
n 

fr
eq

ue
nc

y-
lo

ca
ti

on
 s

pa
ce

, w
he

re
 y

el
lo

w
 i

s 
hi

gh
 

m
ag

ni
tu

de
. (

e)
 M

ax
im

a 
al

on
g 

ea
ch

 tr
an

se
ct

, e
xt

ra
ct

ed
 f

ro
m

 (a
–d

) 
fo

r 
co

m
pa

ri
so

n.
 (f

) 
A

nn
ot

at
ed

 m
ap

 in
di

ca
ti

ng
 tr

an
se

ct
 lo

ca
ti

on
s 

(p
in

k 
li

ne
s)

 f
or

 e
ac

h 
cr

op
 s

pe
ci

es
.

(c) ketabton.com: The Digital Library



24 High Spatial Resolution Remote Sensing

and space, resulting in crop yield loss. Herbicides are relied upon as an important 
tool for weed management in broad-acre cropping systems. However, improper 
use of herbicides typically leads to reduced weed management efficacy and lost 
profitability. To be effective, weed management decisions must be taken based on 
a thorough assessment (i.e., field scouting) of the dominant weed species present, 
area of infestation, and growth stage and size of crops and weeds (Wiles et al. 1992). 
Field scouting for weeds serves as an important component of integrated weed 
management and is conducted at routine intervals to identify problem weed issues 
and make suitable management decisions.

Currently, growers usually employ field scouts and crop consultants to perform 
weed infestation assessments. However, manual field scouting is expensive to growers, 
estimated to cost approximately $10/acre (Prostko 2015), and is often inaccurate due 
to various difficulties and challenges associated with ground-based field scouting. 
Because weed distributions are often patchy, the weed infestation is better viewed 
above the crop canopy. When crop stands are dense, field scouts mainly walk around 
the field edges, thus bypassing weed issues in field centers. Deep standing water 
makes walking inside a field extremely challenging in crops such as rice.

Weed identification and management is highly time sensitive because effective 
weed control is achieved only when weeds are treated prior to a certain growth stage 
(Carey and Kells 1995; Johnson and Hoverstad 2002). However, unfavorable weather 
conditions can severely delay field scouting for several days or weeks. Furthermore, 
field scouting adds a tremendous workload in an already busy season (Czapar et al. 
1997), meaning that not all fields receive timely scouting. An inability to take 
timely action can lead to irreversible crop damage and increased weed pressure in 
subsequent years. Visual weed infestation estimates are also subject to variability 
and human error. There is no standardized visual assessment protocol that applies 
across weed species and is consistent among individuals. In this regard, UAS-based 
tools can be invaluable in diagnosing and assessing weed infestations and facilitating 
precision weed management. Other related applications of UAS technology include 
the assessment of weed and crop growth stages and estimation of weed density 
and spatial distribution, as well as the assessment of herbicide injury and off-target 
herbicide drift damage on crop fields.

Historical use of remote sensing technology for weed assessment and other 
applications uses sensors installed on satellite or other aerial devices. These methods 
have been useful, but not robust due to inadequate spatial resolution. Sensors have 
also been mounted on ground vehicles for simplified weed detection and herbicide 
delivery. However, ground vehicles typically lack the ability to utilize field-level 
spatial information in management decision-making and have limitations under 
wet soil conditions. Compared to ground-vehicle-based platforms, UASs that fly 
at relatively low altitudes provide a convenient means to acquire high-resolution 
imagery of field-level weed infestations.

Earlier research on sensors that could collect data for weed assessment were 
primarily based on surface reflectance (Haggar et al. 1983). For example, the optical 
sensors such as GreenSeeker and WeedSeeker technologies have utilized surface 
reflectance of leaves to differentiate weeds and bare soil (Andújar et  al. 2011). 
Herbicide applications carried out using the WeedSeeker technology have resulted 
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in significant savings in herbicides (Hummel and Stoller 2002). Haggar et al. (1983) 
developed a plant detection system based on the radiance ratio of the red and near-
infrared wavelengths, which is typically greater for green vegetation compared to soil. 
Researchers have also experimented with simple machine vision systems. Fennimore 
et al. (2016) developed a machine-vision-based system that can remove intrarow weeds 
as well as thin crop stands to desired population densities, though this system had a 
limited ability to distinguish weeds at large growth stages and at high densities.

Robust weed detection and differentiation will require the utilization of advanced 
sensors that use reflectance, transmittance, or fluorescence images under ultraviolet, 
visible, or near-infrared illumination. Other sensors, such as LiDAR and thermal 
sensors, may also provide valuable information. Utilization of recent advances 
in sensor technology can be instrumental in this regard (Shi et  al. 2016). Meyer 
et  al. (1998) have shown that leaf shape and textural analysis can be helpful for 
distinguishing weed species for spot spraying. Additionally, spatial structural pattern 
analysis of production fields and knowledge integration can be incorporated into the 
existing approaches. Given the complex characteristics exhibited by weeds, we argue 
that a combination of tools and approaches that include surface reflectance, plant 
height, arrangement of individuals and distribution patterns, canopy temperature, 
plant or leaf shape and structural features, spatial field patterns, and knowledge 
integration will be invaluable in achieving more reliable outcomes.

Research is, however, limited in utilizing UASs for weed assessments and other 
related applications in large-scale agricultural production fields. Some of the existing 
limitations include the lack of advancements in the application of spatial and textural 
analysis of large-scale field images to extract useful diagnostic information and 
develop decision support tools to guide management decision-making.

1.8  CONCLUSIONS

Given the advent of new sensor imaging technologies and advances in UAS platforms, 
agricultural researchers have new opportunities to collect high spatial and temporal 
resolution imagery that can revolutionize the way in which farmers, planners, and 
managers optimize crop production and management strategies. Similarly, plant 
breeders can benefit from rapid assessment and characterization of plant biophysical 
properties, ranging from above-ground and below-ground biomass assessment using 
LiDAR and ground-penetrating radar sensors, plant physiological stress conditions, 
and plant and canopy architectural and structural conditions. Nevertheless, effective 
use and evaluation of new sensors, data acquisition strategies, imagery preprocessing 
requirements, information extraction algorithms and approaches, and the synthesis 
of information and knowledge for use in decision support remain important research 
topics. Remote sensing and information technologies have yet to enable diagnostic 
plant characterization solutions and reliable decision support for optimal agricultural 
management strategies. This will require additional engineering, remote sensing, 
algorithm, and information system development to address a multitude of issues 
related to soil and crop sciences.

New research directions that need to be pursued and require new innovative 
technology solutions include:

(c) ketabton.com: The Digital Library



26 High Spatial Resolution Remote Sensing

•	 UAS payload optimization, including multiple sensors, such as GPS, 
pyranometer, LiDAR, and hyperspectral sensors, and the inclusion of 
onboard processing and CPUs/GPUs to permit near-real-time image 
preprocessing and environmental awareness.

•	 Intelligent UAS navigation capabilities that ensure optimized image 
acquisition based on environmentally aware platforms that can rapidly 
adjust flight planning strategies based on changing conditions. Navigation 
controllers also need to be developed to ensure platform and sensor 
communication with other UAS platforms that enable swarm technologies 
to be utilized effectively.

•	 Data communication and transfer capabilities to address data storage, 
environmental awareness, and efficient turnaround time for stakeholders. 
New antenna technologies and high transfer rates will be needed to support 
navigation, storage, computation, and decision support functionality, given 
all the technical issues associated with geospatial big data. Effective data 
management solutions are critical because data, intermediate processing 
steps, information products, and modeling results must all be organized, 
accessible, and readily available.

•	 Effectively addressing radiometric calibration and geometric correction 
and mosaicking of imagery over large areas. This is required because 
traditional approaches do not effectively account for the issues of space 
(large geographic areas), time intervals, topography, and atmospheric 
conditions related to surface irradiance variations and optimized placement 
of calibration panels and GCPs. In the future, all UASs should include 
irradiance and GPS sensors to address the complexity of radiometric and 
geometric calibration and correction.

•	 Investigation of diagnostic information extraction approaches. Active remote 
sensing research is predominately based on the evaluation of empirical 
approaches to agricultural thematic mapping and biophysical assessment, 
focused on the evaluation of new sensors and image information content. 
Diagnostic information extraction algorithms and approaches are sorely 
needed to produce accurate and reliable information.

•	 Development and evaluation of artificial intelligence technology to enable 
decision support capabilities. This includes addressing semantic modeling, 
knowledge representation, and information synthesis, and enabling 
conceptual knowledge of concepts and causation to be used to address 
mathematically intractable agricultural problems. Similarly, geospatial 
decision support systems will need to be integrated with plant and crop 
production models that account for landscape intakes (i.e., energy, water, 
nutrients) and outputs (i.e., energy, water, biomass).

•	 Finally, the nature of new technological development and geospatial 
big data issues dictates that we require new and improved scientific 
visualization capabilities that support data exploration, computation, 
information synthesis, knowledge discovery, and decision support. 
People need to more effectively interact with software programs and 
systems based on a collective view and understanding of environmental 
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conditions. Modern commercial-based software systems do not provide 
for these capabilities. This is not a trivial task because basic image display 
is totally inadequate for information synthesis and many other issues that 
we have addressed.
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2 Building a UAV-
Hyperspectral System I
 UAV and Sensor 
Considerations

Cameron Proctor

2.1  HYPERSPECTRAL IMAGERY AVAILABILITY

The emergence of commercial Earth imagery products and services companies, such 
as DigitalGlobe, has exploded the market availability of high-resolution (1–2 m) 
multispectral imagery. For many urban centers and the surrounding lands, imagery 
that meets the needs of the majority of the market is available from various resellers, 
or acquisitions can be ordered at reasonable costs. The hyperspectral market is 
considerably less developed and lacks centralized repositories of imagery. There 
is a considerable paucity of hyperspectral data availability in comparison to data 
from multispectral sensors. The largest provider of free hyperspectral data is NASA 
(distributed by the U.S> Geological Survey via http://aviris.jpl.nasa.gov/alt_locator/, 
http://earthexplorer.usgs.gov/, and http://glovis.usgs.gov/), who operates the airborne 
AVIRIS and satellite EO-1 Hyperion sensors.

Although EO-1 orbits in formation with Landsat, its swath width is a paltry 7.7 km 
versus 185 km and it is primarily a tasking satellite, that is, imagery acquisition is 
scheduled. Hence, its data availability is limited, although its geographic coverage 
contains the entire planet. In contrast, AVIRIS is an airborne system based out of 
California and flies primarily in the United States, although data requests have 
taken it to individual sites in Canada and the Caribbean. While nearly 2/3 of the 
California coast and 1/3 of the interior of the state have been subject to at least 
one imagery acquisition, coverage in other states is severely lacking (AVIRIS data 
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portal). It is difficult to isolate exact figures, but the majority of hyperspectral imagery 
acquisitions may be through private contractors. Airborne surveying companies, such 
as ITRES, Merrick, and SpecTIR, service a number of clients from the mining, oil 
and gas, agriculture, forestry, defense, and vegetation sectors. Because the imagery 
was acquired for these clients upon request, the data agreement will dictate whether 
the imagery can be resold to tertiary markets. Certainly, survey companies do not 
tend to advertise the availability of previously acquired imagery, suggesting that the 
majority of clients have no-resale clauses.

2.2 � ADOPTION OF HYPERSPECTRAL UNMANNED 
AERIAL VEHICLES

Although the market for large- and small-scale hyperspectral surveying is small, there 
are a number of providers that do have the capabilities (e.g., ITRES, Specim). Why, 
then, construct a hyperspectral unmanned aerial vehicle (UAV) system? Certainly, 
the technology has not evolved sufficiently that a compact sensor package weighing 
less than 2 kg offers the same spectral fidelity and performance as systems many 
times its weight and cost. The hyperspectral UAV market is still in its infancy, and 
commercial off-the-shelf systems are rare, requiring users to build custom systems 
wherever technological barriers have not been completely resolved, guidance is 
difficult to find, and best practices have not been established. This leaves the adopter 
to take on the unusual and complex role of being responsible for logistics, insurance 
issues, aircraft maintenance, and other tasks typically reserved for service providers 
and built into the cost of commercial aerial surveys.

The obvious answer to the question of why construct a hyperspectral UAV is that 
they offer attractive advantages over contracting commercial aerial survey providers. 
Foremost is cost. Hyperspectral airborne surveys typically run upwards of $50–$200 
per square kilometer, and minimum scanning area requirements invariably place the 
final cost in the order of tens of thousands of dollars. Mobilization costs consume a 
large portion of budgets because the plane and sensor package often need to be flown 
cross-country to the site of investigation, incurring costs from staff time, airport 
hangar fees, fuel, etc. These costs can place a substantial burden on users in remote 
locations. Users pay a premium for hyperspectral technology because the client 
base is smaller, there are few large anchor clients, and repeat business is uncertain, 
concentrating the costs of doing business such as maintenance and overhead.

The paradigm shift in owning a hyperspectral UAV is that start-up costs are 
very high, but each successive flight reduces the cost per square kilometer. Since 
the capital costs of a hyperspectral UAV are in the order of three to four airborne 
surveys, savings can begin to accrue after a few years of operations. However, the 
resources spent on getting a hyperspectral UAV program up and running are not 
trivial. Adopters must envision utilizing hyperspectral UAVs in the long term as a 
central element of their programs. Ongoing costs further strain research budgets. 
Annually, operators are required to purchase insurance, acquire flight permits, and 
oftentimes hire industry experts. A busy season of hyperspectral UAV imagery 
acquisition may bring the individual flight costs down to ∼$1000 per flight (not 
including capital amortization). In addition, flight schedules or isolated areas that 
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would be cost-prohibitive with airborne surveys become more feasible with UAVs. 
For example, acquisition of glacier or wildlife imagery (Bhardwaj et al. 2016, Chabot 
and Bird 2012) simply requires shipping the UAV through regular channels and a 
large trunk. Repeat surveys at monthly time intervals are notoriously cheaper when 
the investigator owns the equipment, as opposed to making use of airborne service 
providers who are also obligated to service other clients. For wildlife researchers, 
UAVs have the added benefit of minimizing disturbances. Birds and animals tend 
to ignore UAVs, whereas in the same circumstances a typical airplane would elicit a 
reaction of panic.

The availability of the UAV means that there is no need to compromise on flight 
scheduling. The flexibility offered by a UAV is warranted for investigations of 
temporally limited or variable phenomena, such as phenological timing (Herwitz 
et al. 2004). Wine growers in particular have an economic need for repeated sampling 
within a narrow temporal interval to support decisions of optimal harvest times 
(Comba et al. 2015) or to detect water stress for irrigation purposes (Baluja et al. 2012) 
because wine sensorial attributes are negatively affected by drought (Chaves et al. 
2007). Follow-up investigations of interesting phenomena or repeat flights to improve 
sensor performance or correct bad data are simpler with a UAV because possession 
of the data is near real time and quality control can be performed on site. Lastly, 
UAVs are a unique opportunity for experimentation and innovation. Traditional 
hyperspectral remote sensing is top-down, penetrating fewer than 1–2 mm into the 
vegetation canopy; few studies have investigated multiangle, three-dimensional 
scanning, or bidirectional reflectance distribution function of vegetation canopies. 
Unlike airborne surveys, UAVs offer precise flight control, allowing investigations 
from unique angles and perspectives (Hakala et al. 2010, Suomalainen et al. 2015).

The future prospects of hyperspectral UAVs are difficult to quantify because 
they lie on the precipice of technological innovation and user experience. The power 
offered is so new that its applications have yet to be fully realized. Extrapolating 
from the characteristics of hyperspectral UAVs, we can speculate that applications 
involving interaction with the environment are going to increase in prevalence. 
The precision agriculture community has already developed a range of UAVs that 
can sense and interact with their environment to deliver nutrients and pesticides 
in a highly spatially resolved manner (Giles and Billing 2015). Sense-and-follow 
technologies are also in the works for surveillance, wildfire detection, and tracking 
(Zhang et al. 2016). One day, hyperspectral UAVs might work in coordination with 
fleets of simple UAVs, with camera systems capable of detecting anomalies that could 
be further investigated by UAVs with more powerful sensory equipment. Sensor 
payload combinations will become more common as payloads get lighter, permitting 
coincident multiangle imagery capture and perhaps even digital surface modeling 
with hyperspectral overlay (Salamí et al. 2014).

2.3  HYPERSPECTRAL IMAGING FOR UAVs

Unsurprisingly, the military has the longest history of hyperspectral imaging, starting 
with the airborne imaging spectrometer in 1985 (Richter 2005), barely predating 
the Jet Propulsion Laboratory’s AVIRIS system that began collecting data in 1987. 
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Since then, hyperspectral imaging has flourished in the defense and commercial 
sectors. Early adopters of hyperspectral UAVs noted that the products available were 
simply downscaled versions of earlier manned-airplane-sized systems, and that many 
commercial solutions were not optimized for UAVs (Suomalainen et al. 2015). In 
recent times, the availability of UAV-suitable sensors has grown. Entry into the UAV 
market by hyperspectral imaging manufacturers with core business interests in the 
food processing and food quality sectors, among others, has increased the options 
available (e.g., Figure 2.1). Many companies now offer complete sensor packages, all 
requiring integrating costs, because there is no standardization for UAV payload size.

At their core, hyperspectral imagers are enabled by two key technologies: a 
wavelength dispersion element that divides polychromatic light into narrow distinct 
bands based on wavelength, and a two-dimensional detection array that converts 
radiance into quantifiable digital information (e.g., Figure 2.2). Examples of 
splitting techniques include dispersive gratings, prisms, spectrometers, Fabry-Perot 
interferometer, Michelson interferometers, and acoustic-optical tunable filters. An 
ideal spectral splitting technology would have explicit barriers between bands and be 
capable of projecting each band onto an array of photodetectors of 10–20 µm pixel 
size with no loss in radiance. Practically, no technique can achieve all these criteria, 
and must elicit trade-offs.

Typical photographic cameras capture imagery in two spatial dimensions, while 
videographic systems capture three dimensions by collecting a series of images in quick 
temporal succession. Hyperspectral imaging is a four-dimensional data collection 
system. To acquire a hyperspectral data cube (or hypercube), data must be collected 
in four dimensions: two spatial, one spectral, and one temporal. Unfortunately, all 
detectors consist of XY arrays of light-sensitive pixels, requiring either scanning or a 
snapshot approach where three dimensions are captured on one array.

Spatial scanning is the most common approach, and is also commonly referred 
to as line scanning, as the second spatial dimension is acquired through sensor 
movement (Figure 2.3). In line scanning, the spatial dimension perpendicular to the 
UAV’s movement is scanned by blocking all incoming light, save for a narrow slit 
(∼10–40 µm). Hence, the spatial dimension is projected onto the X-dimension of the 
detector array, and a dispersion element is used to split the incoming light onto the 
detector’s Y-axis. Note that a whisk broom sensor is a special case of spatial scanning, 

FIGURE 2.1  Range of UAV-suitable sensors offered by Headwall Photonics. (Left) Nano-
Hyperspec; (Middle) Micro-Hyperspec VNIR; (Right) Micro-Hyperspec NIR. Images 
provided by Headwall Photonics.
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FIGURE 2.2  The optical layout for the Headwall Photonics hyperspectral image sensor 
comprises a diffraction grating along with focusing optics and curved mirrors. Light enters 
the unit from a narrow slit behind the lens, where it is dispersed by wavelength and projected 
onto a two-dimensional detector array. Image provided by Headwall Photonics.
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FIGURE 2.3  Various approaches to hyperspectral scanning. (Left) spatial scanning; 
(Middle) spectral scanning; (Right) snapshot scanner.
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but has recently fallen out of favor because the rotating mirror adds mechanical 
components and weight.

Spectral scanning opts to record then project the entire image (i.e., both spatial 
dimensions) onto the detector array for a monochromatic (single wavelength interval) 
map of the scene, utilizing either a fixed or tunable band-pass filter. Hyperspectral 
imagery can be constructed by exchanging successive filters, if platform movement 
is minimal during the interval necessary to swap filters. There are certain advantages 
to a “photographic” representation of a scene. Tunable filters are particularly 
advantageous because they are not locked into manufacturer bands and thus can 
be optimized to target the user’s wavelength region(s) of interest and acquire data 
on solely those regions, considerably restricting data output by eliminating the 
compulsory data collection from nonuseable bands.

Nonscanning or imaging spectrometers collect all spatial and spectral data on 
a two-dimensional array, yielding the complete hypercube in one snapshot. By 
nature of the spectral dimension being mixed with the spatial dimension into two 
dimensions, the detector arrays are quite complex. Certain approaches consist of 
tiled or mosaicked detector arrays and optical filters. The main advantages of these 
systems are that they offer higher light throughput and shorter acquisition times. 
Snapshot hyperspectral imagery is akin to traditional photography, and, as such, can 
take advantage of the more developed software market, which offers considerably 
more pushbutton tools for mosaicking imagery and digital surface model generation.

2.3.1  Pushbroom Hyperspectral

As of this writing, there are less than 10 pushbroom hyperspectral manufacturers 
serving the civil UAV market (Table 2.1). Note that no single sensor operates over the 
entire 400–2500 nm wavelength region. It is common practice in the hyperspectral 
remote sensing industry to utilize multiple detectors because no single detector 
material provides acceptable performance across the entire wavelength region. Field 
hyperspectral sensors, such as those provided by ASD, utilize three sensors: (1) a 
visible near-infrared (VNIR) detector (350–1000 nm) comprised of silicon; (2) a 
short-wave infrared (SWIR) detector (1001–1800 nm) comprised of an index indium 
gallium arsenide (InGaAs) photodiode; and (3) a two-stage thermoelectric (TE) 
cooled SWIR detector (1801–2500 nm) comprised of an index InGaAs photodiode. 
Accordingly, UAV hyperspectral sensor manufacturers offer separate units for the 
VNIR and near-infrared (NIR) regions.

Regardless of wavelength region, there are two main categories of wavelength 
dispersive technology commonly utilized: transmission (prism-based) and reflective 
(grating-based) (Figure 2.4). In transmissive dispersion, a prism splits the incoming 
light due to the change in refractive index, which deviates the path of light using 
Snell’s law. The resolving power of a prism is proportional to its size and the higher 
the refractive index is from air (air = ∼1.0 vs. optical glass ∼1.7 and beyond, i.e., 
Schott N-LASF31A: n = ∼1.9). Higher refractive index materials tend to have lower 
transmissivity. These design considerations are nonoptimal for small form factors, 
hence the development of curved transmission prisms to increase the dispersive 
power of a prism–grating–prism construction. Incoming light from the entrance 
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split is collimated by the front lens onto a volume transmission grating between two 
almost identical prisms. The transmissive optics are arranged such that the dispersed 
light is parallel and centered onto subsequent collimating lenses that project onto the 
detector. The advantages of transmissive wavelength dispersion are that the electro-
optics are arranged in a straight optical path and offer uniformly high efficiency 
and low scatter. Transmissivity of visible light can be greater than 90% and vary 
negligibly by wavelength (Figure 2.5), allowing cheaper detector arrays to be 
utilized because of the high throughput. Lastly, wavelength dispersion is nonlinear 

TABLE 2.1
Partial List of Hyperspectral Imager Manufacturers

Manufacturer Products Weight (kg) VNIR NIR References

Resonon PIKA 1.4–7.5 X X Hruska et al. (2012)
Patterson and Brescia (2010)
Swanson et al. (2007)

Headwall Micro-Hyperspec 0.5–2.0 X X Li et al. (2015)
Zarco-Tejada et al. (2012)

NovaSol visNIR microHSI
Alpha-vis microHSI

0.45–3.5a X X Dayton et al. (2011)

OptoKnowledge HyperScan VNIR 
micro

6.2 X Gat et al. (2015)

Specim AisaKESTREL 4.75–5 X X Rossini et al. (2013)
Lin et al. (2013)

BaySpec OCI-UAV 0.63 X

Surface Optics SOC710-GX 1.25 X

VTT Technical 
Research

Snapshot camera 0.72 X Honkavaara et al. (2012)

a	 Camera Only.
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FIGURE 2.4  Comparison of prism and diffraction grating wavelength dispersion devices. 
Not to scale.
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and can be high in prism-based systems, dispersing blue wavelengths less than red 
wavelengths. Hence, the difference in center wavelength between neighboring bands 
is not constant over the spectrum. For the prism-based EnMap spectrometer, the 
average spectral sampling distance is 6.5 nm, but varies to ∼4.8 nm in the blue 
region and 8.2 nm at 1000 nm (Kaufman et al. 2015). Geometrical distortion in the 
spectral axis can be compensated for, at the cost of added components, weight, and 
complexity.

Refractive wavelength dispersive elements utilize a diffraction grating, consisting 
of periodic angled ridges that emanate light from each slit, causing additive and 
destructive interference resulting in structural dispersion. Changing the dimension 
of the periodic structure controls the amount of dispersion and energy diffracted. 
Hence, more control and higher resolving powers are achievable in comparison with 
transmissive optics, especially in the NIR. Concentrating most of the diffracted 
energy for a given wavelength is a technique called blazing. Blazing tends to improve 
the overall efficiency of the grating (Figure 2.5), yet concentrates the peak efficiency 
within a narrow range that descends rapidly in comparison with nonblazed gratings, 
where peak efficiency loss is minor over a longer wavelength range. Although light 
throughput is variable by wavelength, dispersion is constant, and the difference in 
center wavelength between neighboring bands is the same over the spectrum.

Plane and curved gratings are common; for instance, the Headwall photonics 
hyperspectral series, based on an Offner configuration with two concave mirrors 
and one convex grating (Figure 2.4). Incoming light from the entrance slit is guided 
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by the lower mirror to the reflection grating, where it is dispersed and guided by 
the upper mirror to the detector. The realization of an all-reflective optical system 
utilizing metallic materials achieves higher throughput because surface reflective 
losses that occur with transmissive optics are avoided. However, grating may exhibit 
more scattering than prisms, reducing the spectral purity. Furthermore, Offner-
type spectrometers operate with a relatively low f-number (≥f/2), accepting a long 
slit while maintaining a compact size and producing high image quality free of 
aberrations (Bannon and Thomas 2005). Reflection wavelength dispersion elements 
are well-suited to situations where high signal-to-noise ratio is desired.

2.3.2 D etector Array

Dispersed light is projected across a two-dimensional detector array, whose sole 
function is to quantify the intensity of the collected light by converting radiation 
energy into electrical signals. By this definition, the technology within a digital 
photographic camera or even a cell phone is suitable for a hyperspectral sensor. While 
hyperspectral sensors do employ detector arrays within the same family, the detector 
array quality is considerably heightened. Typically, detector arrays of machine vision 
or scientific grade are utilized. These detectors distinguish themselves by providing 
high performance, with frames per second and noise as specific key parameters. 
Higher frames per second are preferential for capturing dynamic motion. Low noise is 
preferential in all situations because noise introduces artifacts into the image, which 
results in a grainy appearance. Noisy data compound as the number of bands utilized 
increases. Considerable research effort has been spent on quantifying the signal-to-
noise ratio (Weatherbee and Procino 2010), which is a key parameter for deciding 
between detector array options.

No detector array technology is superior across all metrics. Performance is often 
seated in physics limits that are unconcerned with budget size. Hard trade-offs are 
wrought between competing technologies, and there often exists a crossover point 
where a detector array that performs poorly in all other regards will display superior 
performance in one. The main detector array technologies are the silicon charged 
couple device (CCD), scientific complimentary metal-oxide semiconductor (CMOS), 
and InGaAs CMOS hybrid. The working principle of a CCD is light absorption by a 
photoelectron collection well, in contrast with CMOS, which utilizes a photodiode-
amplifier pair for achieving photoelectric conversion (Bigas et al. 2006). A CCD 
has off-detector analog-to-digital conversion that is less parallel than the on-chip 
conversion in CMOS. Requiring all electrical signals to be converted into digital at a 
common port limits acquisition speed. Consequently, CMOS detector arrays are more 
flexible, and higher-end versions can be designed to have much lower noise than an 
equivalent CCD at the highest frame rates.

Because both CCD and CMOS utilize silicone as the means of absorbing photons, 
they are physically limited to an absorbance range regulated by its molecular 
structure. Photoconversion in silicone declines considerably beyond 800 nm (Figure 
2.6), and is typically replaced by InGaAS arrays for NIR regions. InGaAs arrays 
bear more similarity to CMOS, with the main differing factor being the compound 
matrix utilized to absorb photons in the NIR. Although an InGaAs detector array 
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has superior performance in the NIR, array noise is considerably more sensitive 
to temperature. Cooling elements of various voracities often accompany InGaAs 
detectors and add to the total system weight.

Comparisons from various manufacturers of the performances of their detection 
arrays abound. It is challenging to determine the veracity of each manufacturer’s 
claims. Considering the variability within families of detector arrays, coupled with 
the subtle technological improvements that aid performance, general rules are 
suspect. Sensitivity in the NIR regions is a good example. A brief Internet search 
will provide abundant examples of CCD and CMOS detector array comparisons 
touting superior performance, depending on the manufacturer’s bias. Perhaps the 
only dependable conclusions are that CCDs permeate the market, and traditionally 
offer high performance and low noise. Saturation can be a problem with CCDs under 
high light conditions. The response of CCDs to light intensity is not linear, especially 
beyond 85% of the bit depth. As the market increases, CCD costs are spread over a 
larger client base, providing more performance for cost. However, newer generation 
CMOSs compete with CCDs and best them in frame rates, field of view (FOV) 
(spatial resolution), dynamic range, and noise at higher frame rates. Regardless of 
rules of thumb, the adopter should consult with the manufacturer to assess the trade-
offs between offered models. Often, the deficiencies of one type of detector array 
can be compensated for via other components on the hyperspectral sensor, or the 
performance gained from selecting a higher-end model may not be relevant to the 
user’s application.

Additional parameters influence real-world detector performance. For instance, 
the ability of the array to produce large voltage from a few photons is arguably 
as important as, if not more important than, the wavelength dispersion device in 
determining the final signal-to-noise ratio. The main detector characteristics 
regulating performance are quantum efficiency (QE), integration time, and noise. 
QE refers to the conversion of photons into electrons, which are included in the 
intensity of the incoming light signal. An ideal detector would have a QE of 1.0 across 
all wavelengths; in practice, detectors convert up to 80% of VNIR and 65% of NIR 
light, primarily governed by the substance used. Efficiency is lowered as some light 
is absorbed by the detector itself or the structural supports surrounding the detector, 
or the light hits upon a region of the detector that provides a weak or no electrical 
response. Conversion of photons to electrical signal depends upon the band structure 
of the detector and is thus wavelength sensitive. QE typically descends from its peak 
value until it reaches a wavelength cutoff, where a signal beyond the typical noise 
is unmeasurable. For VNIR detectors, the QE per wavelength often forms a bell-
shaped curve, with declining efficiency toward the ultraviolet (UV) and NIR regions 
(Figure 2.6), while NIR detectors feature a more flattened response across a broad 
spectral range, declining sharply into the visible and further NIR.

Other operating parameters that have a large impact on performance are the 
interrelated characteristics of dynamic range, full well capacity, and bit depth. These 
values are related to the pixel physics. Currents produced by detectors are in the order 
of femtoamperes, which discourages accurate measurements. Detectors must be able 
to recognize slight amperage variations in order to accurately parse the analog signal 
into discrete packets of digital information. Analog signals are converted into digital 
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number of a range given by the power to base 2, typically 28 (0–255) or 212 (0–1023) 
levels. One approach to getting around this physical limitation is to allow a large charge 
to accumulate. The greater the maximum charge the detector can accumulate, the greater 
the amperage gap between digital numbers can be widened, or a larger range of digital 
numbers can be recorded based on the detector’s electrical sensitivity threshold.

Full well capacity refers to the number of electrons each detector pixel can 
accumulate before saturation. A closely related parameter is dynamic range, which 
refers to the ratio between full well capacity and noise. If a sensor has a full well 
capacity of 22,000 electrons and a readout noise of 7, the dynamic range is 3142 : 1. 
This value provides a measure of how clearly a signal appears from the noise. Strong 
signals above the noise floor can thus be parsed into small divisions, increasing the 
permissible bit depth. For the above sensor, a bit depth of 10 (1024 grey levels) creates 
a conversion ratio (the number of electrons needed to distinguish between grey 
levels) of ∼21.48 electrons, which is well above the detector’s electrical sensitivity 
threshold. Conversely, a bit depth of 12 (4096 grey levels) has a conversion ratio 
of ∼5.37, which is a more reasonable compromise. Generally, a larger bit depth is 
advantageous because it retains finer scale variations from the original image. Yet 
caution is warranted when interpreting the performance gain from any one parameter 
because many detector characteristics are interrelated. Often, the drawbacks of one 
parameter are partially compensated for by another, or have little impact on a specific 
application area. Premium performance metrics cost considerably more than products 
intended for diverse markets.
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FIGURE 2.6  Theoretical quantum efficiency of Si- and InGaAs-based detector arrays.
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Overall, VNIR detectors can have substantial bias against sensitivity to NIR 
wavelengths, resulting in low signal to noise. Figure 2.7 shows a typical spectrum 
recorded by a Headwall Photonics Micro-Hyperspec A Series hyperspectral imager 
under clear sky conditions at solar noon of a white reference. Note that the spectrum 
drops off considerably beyond 800 nm.

2.3.3 H yperspectral Sensor Performance Metrics

The main challenge of hyperspectral imaging is dividing the light passing through 
the entrance slit through a wavelength dispersion element and then onto an array of 
detectors of micrometer proportions. Misalignment errors of the projection of the 
ground sampling area onto the detector induces overlap between pixels. Specifically, 
spectral misalignment tilts the band center wavelength such that the poles of the 
detector, supposedly receiving light at 500 nm, may in actuality be receiving light 
2–4 nm differently, depending on the degree of misalignment. Spatial misalignment 
can also occur, such that within the wavelength range (e.g., 400–1000 nm), shorter 
wavelengths may receive radiation from the proper ground area, whereas at longer 
wavelengths the radiation is received from the adjacent pixel. Aside from homogenous 
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misalignment problems, the majority of detectors suffer curved misalignment effects 
to a certain degree. Known as smile effects and keystone effects (Figure 2.8), these 
properties denote the variations in misalignment in the spectral and spatial domains. 
Smile effects are a curvature in the misalignment in the spectral domain, caused 
by imperfections in the optics or the dispersive element. Similarly, keystone effects 
introduce a bias in projection onto the spatial domain. Keystone effects are typically 
negligible at nadir and increase at the poles of the FOV. Adopters should inquire with 
manufacturers regarding their sensors’ smile and keystone performances across the 
entire FOV and wavelengths, as opposed to a sole “averaged” value.

Assuming the incoming light is properly registered on the detector, the frame 
of the lens can shade incoming radiation with high incident angles. Known as a 
vignetting effect, this results in a radial light intensity falloff toward the image 
edges. Under homogenous lighting conditions, the light intensity received can vary 
by 30%–40% between the detector center and edge (Goldman 2010). Vignetting can 
be induced through a variety of causes that are explained by Goldman (2010) and 
Kim and Pollefeys (2008). Correcting vignetting by modeling the optical pathway or 
by image-based techniques (Yu 2004) is possible. Image-based techniques utilize an 
integrating sphere of known radiance output to acquire a gain and offset matrix for 
each pixel of the detector along both the spatial and spectral dimensions.

Adopters of hyperspectral UAVs incorporate a range of quality assurance 
diagnostics as part of their image acquisition workflow. Many undertake the bare 
minimum, such as dark current calibration, and simply utilize the manufacturer-
provided calibration software modules. Others have a more robust processing chain, 
wherein they themselves take additional steps to quantify the precise radiometric 
response and noise introduced by electronic components and utilize custom software 
to correct artifacts in the incoming signal. Various types of quality assurance or error 
modeling and corrections procedures have been attempted, such as laboratory and 
field calibration (Liu et al. 2014), distortion correction (Gorsevski and Gessler 2009), 
point spread function (PSF) nonuniformity effects (Schläpfer et al. 2007), camera 
calibration (Aasen et al. 2015), and signal-to-noise modeling. These procedures range 
in complexity and should be considered in applications requiring a high degree of 
spectral and spatial accuracy.

Ideal Misalignment Keystone

Smile

FIGURE 2.8  Issues with projection of dispersed light onto a detector array. (Left) ideal 
case of ordered alignment; (Middle) misalignment of the projection onto the array; (Right) 
distortion caused by smile and keystone.
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2.4  CONCLUSIONS

As of 2017, the hyperspectral UAV market is poised to expand, providing a wealth 
of high spatial resolution hyperspectral data at hitherto unimaginable costs. Coupled 
with the ease of integrating commercial off-the-shelf hardware, adopters are offered 
a variety of turnkey and custom hyperspectral solutions suitable for UAV imagery 
acquisition. However, challenges remain when assessing technical specifications 
and understanding how they convert to real-world performance. Lacking a coalition 
of experts instituting rules for common practice, early adopters are squarely in the 
product testing and deployment phase. They pay an “early adopter tax,” in that 
commercial offerings are expensive, possibly prone to malfunction, and crude. Early 
adopters are also placed in the role of the trendsetter, their choices adopted by the 
next generation. Hence, those thinking of adopting a hyperspectral UAV may bear 
some responsibility for developing core practices and pragmatic advice in their area 
of application. Only by understanding the technology underlying hyperspectral UAV 
systems can this burden be lightened.
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3 Building a UAV-
Hyperspectral System II
 Hyperspectral Sensor 
Considerations and 
Data Preprocessing

Cameron Proctor

3.1  TECHNICAL CONSIDERATIONS

Despite the remote sensing community having amassed a large amount of expertise in 
hyperspectral data processing, few have the opportunity to venture into the engineering 
realm. Technical problems from integrating electronic and optical components or 
contrasting manufacturer products in order to make purchasing decisions occur when 
the adopter’s knowledge of hyperspectral hardware is limited. The industry’s relative 
lack of consumer reviews and reluctance to provide technical specifications beyond 
tombstone data leaves adopters with few means to discern between instruments. Often, 
subtle technical parameters count more toward the performance of the final system, 
and choices that appear simplistic can have drastic consequences. Adopters can be 
swayed by such notions as a turnkey system or a lower price, neither of which is 
necessarily likely to produce a scientific instrument that fits the user’s requirements. 
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Adopters often fail to realize the mismatch between their needs and the sensor until the 
application phase, by which time considerable time, money, and resource expenditure 
have locked them in with a suboptimal system. The preventative is to delve deep into 
understanding the inner workings of a hyperspectral unmanned aerial vehicle (UAV).

3.2  RELATIONSHIP BETWEEN SENSOR AND UAV

Although it is tempting to envision a sole hyperspectral UAV for all application areas, 
on a practical level sensor hardware and flight characteristics are interrelated and 
work together to constrain operating parameters (Patterson and Brescia 2010). For 
example, AVIRIS spatial resolution varies depending on the altitude of the aircraft, 
and is typically captured at two tiers based on the aircraft platform. The larger NASA/
Ames Research Center ER-2 operates at 20 km altitude, 11 km swath width, and 20 m 
resolution, in contrast with Twin Otter International’s lower-altitude turboprop, which 
operates at 4 km altitude, 4 km swath width, and 4 m resolution (Greena et al. 1998). On 
account of the increasing field of view (FOV) with altitude, the plane must vary either 
its flight speed or its sensing interval in order to compensate, hence the ER-2 operates at 
734 km/hr (as opposed to the Twin Otters’ 222 km/hr). The fact that the AVIRIS sensor 
had to be ported to a different aircraft altogether to achieve higher spatial resolution 
alludes to the considerably narrow operating range regulated by the hardware.

In the UAV market, adopters can select from a wide range of optics, imager 
frame rates, and UAV platforms that dictate the operating parameters. The endless 
combinations make it challenging for manufacturers to transform the technical 
specifications of their hardware into real-world performance. Often, responsibility 
lies with the adopter. In most cases, adopters are interested in the size of the swath 
width in order to obtain an aerial coverage similar to that of airborne or satellite 
systems. The determinants of swath width are the angular field of view and the flight 
altitude (Figure 3.1), according to

	
Swath FOV=







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× ×H

θ

where H is the altitude in meters and θFov is the angular field of view in degrees.
The swath width equation demonstrates that altitude has a linear relationship 

with swath width, whereas FOV approaches linearity. For a 25° FOV sensor at 50 m 
altitude, tripling the flight height increases the swath width from 22.16 to 66.5 m, in 
contrast with tripling the FOV, which increases it to 76.7 m (∼3.4 times).

Swath width is a prime determinant of the area coverage a UAV hyperspectral 
is capable of scanning. However, pushbroom scanning by definition involves two 
spatial dimensions: cross track (orthogonal to the flight direction, i.e., swath width) 
and along track (parallel to the flight direction). Distances traversed in the along-
track dimension depend on the speed of the UAV and the flight time spent scanning. 
A 20-minute flight at 200 m altitude using a 48.7° lens with a fixed-wing UAV at 
22 m/s covers 4.7 km2 (181 m cross-track × 26,400 m). Scanned areas, in practice, 
are much smaller because UAV endurance is spent on mobilizing to the site and 
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in-flight maneuvers. Common practice further dictates an overlap of 30%–60% 
between scan lines, reducing the coverage gain per additional scan line (Figure 3.2). 
Scan line overlap reduces the likelihood of gaps due to divergence from the planned 
UAV position and sensor orientation.

Arguably, the greatest parameter of interest to hyperspectral UAV adopters is the 
ground sampling distance. The smaller the ground sampling distance, the finer 
the detailed elements of objects that can be resolved. Ideally, any object of interest 
in the image should be at least 4 pixels in size to be detectable. A ratio of ground 
sampling distance to object size of 10 : 1 is preferred for object-based classification 
methods. In a pushbroom configuration, each pixel in the detector array is sensitive 
to radiation given by the lens’ instantaneous field of view (IFOV). At nadir, the 
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FIGURE 3.2  Preflight mission planning showing set waypoints versus actual path of UAV.
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IFOV is projected as a circle along the ground [ground IFOV (GIFOV)] (Figure 3.3), 
according to

	
GIFOVnadir

IFOV=






2

2
× ×H tan

θ

where θIFOV is the instantaneous field of view.
Note that the GIFOV at nadir is greater than the area sensed and allocated to 1 

pixel. However, the contribution of radiation to the final value from within the GIFOV 
is not homogenous. The contribution peaks near the center and decreases around the 
edges of the GIFOV; it further varies by observing conditions and as a function of 
the wavelength. Known as the point spread function, complicated measurements 
or modeling are often required to provide a reasonable estimate of this quantity. A 
Gaussian point spread function is assumed; however, the validity of this assumption 
over the detector array with wavelength is questionable. Often, the point spread function 
will exhibit some anisotropy and non-Gaussian behavior. The takeaway is that the 
ground sampled by the detector extends beyond the ground attributed to a pixel. Thus, 
each detector pixel receives some contamination from the adjacent pixels (cross track) 
and between scan lines (along track). Although an image may look sharp, radiation from 
the ground surrounding the pixel is included without being visually distinguishable.

The IFOV is an angular quantity. At nadir, the projection of the IFOV forms a circle on 
the ground. Off-nadir, the IFOV projection becomes more elliptical because it intersects 
at increasing angles. The view angle effect increases the area viewed on the ground by

	 ∆X H( ) ( ( ) tan( ))θ θ θ θ θ= + − −tan IFOV IFOV

where ΔX is the cross-track area scanned on the ground and θ is the angle between the 
nadir and the view angle (typically the center of the IFOV of the off-nadir pixel). The 
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FIGURE 3.3  Difference between ground sampling distance, GIFOV, and pixel size for a 
hyperspectral imager.

(c) ketabton.com: The Digital Library



53Building a UAV-Hyperspectral System II

elliptical GIFOV at off-nadir angles increases overlap. In addition, the area from which 
signal is received and the path length through the atmosphere are increased. For a UAV 
at 200 m with an IFOV of 0.902 mrad, the GIFOVs at nadir, 12.17°, and 24.4° are 0.36, 
0.38, and 0.435 m, respectively (Figure 3.4). Hence, the sampling density (number of 
samples per ground area) is reduced at the poles of the scan line. View angle effects 
can be enhanced by changes in sensor orientation due to the roll of the UAV.

Without movement of the UAV, the sensor will acquire data across the entire 
scan line. Forward motion by the UAV elongates the GIFOV into an oval shape. 
However, most data processing systems do not have the capabilities to represent the 
sampling area as an array of overlapping oval shapes. For simplification, the GIFOV 
is allocated into a nonoverlapping pixel array whose X and Y dimensions attempt to 
preserve the geometric fidelity of the sampling area. Compelling the GIFOV into a 
pixel necessitates treating the cross- and along-track dimensions independently, or 
distortions can occur during geocorrection (reallocating image pixels to their correct 
geographic positions) and geocoding (assigning to each pixel an estimation of its 
correct geographic coordinates). Forcing pixels elongated in the along-track direction 
into a square representation will cause gaps between scan lines, while contracted 
pixels will overlap.

To achieve square pixels, it is common practice to predetermine the necessary 
combination of the proper operating parameters of the UAV and sensor before 
purchasing hardware. Many manufacturers offer tools or expertise to help adopters 
make proper purchasing decisions. It is highly recommended that adopters make 
use of these offerings. Ignoring GIFOV, a simplified approximation for cross- and 
along-track ground sampling distance can be determined. Generally, flight altitude 
and FOV determine the cross-track pixel resolution, while UAV ground speed and 
sensor integration time determine the along-track pixel resolution.
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FIGURE 3.4  Example of off-nadir FOV and associated GIFOV.
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where v is the UAV ground speed, Δt is the sampling time interval, fps is the frames 
per second, and GSDct and GSDat are the ground sampling distance in the cross-
track and along-track directions, respectively. In this approximation, GSDct relates 
to the ground portions of the GIFOV that contribute strongly to the value recorded 
by the detector. GSDat relates to the length of IFOV along the ground, also known 
as the dwell time. It is important to distinguish between the UAV velocity and the 
ground speed because wind can considerably add to or detract from the total ground 
area traversed.

Adopters should perform their due diligence and consider the implications of each 
hardware choice. For example, wide angular FOV lenses force a higher flight altitude, 
which can reduce ground sampling distance. A UAV with a 3.6 km/hr cruise speed 
and an 11.49 frames per second pushbroom imager with 1004 spatial bands would 
have a GSDat of 0.087 m (1.0 m/s × 0.087 second). For a 25.0403° angular FOV lens, 
the flight altitude would have to be ∼196 m to achieve a square ground sampling 
distance
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For a square ground sampling distance, the relationship between the required 
frames per second and altitude decreases as a power function (Figure 3.5). Descending 
from the altitude ceiling (which is strongly variable between fixed-wing and multirotor 
UAVs) quickly increases the required frames per second. Descending from 30 to 20 m 
increases the frames per second by 1.5×. For a given UAV ground speed, the FOV is 
negatively correlated with the required frames per second because the longer cross-
track distance is balanced by increasing the scanning interval. The opposite is true for 
the UAV ground speed. The frames per second are increased in order to compensate 
for the larger ground area covered in the scanning interval.

Sensor frame rates are adjustable, up to a maximum rate determined by the detector 
quality. AVIRIS and CASI offer frame rate ranges between 10 and 100, up to 333 fps, 
and maximum UAV fps of 25–100 are not uncommon. Other parameters are less 
adjustable. In particular, the speed range of a UAV can be quite limited. Fixed wings 
must operate at high speeds to remain aloft, and multirotors have difficulty achieving 
moderate speeds. In many cases, the easiest adjustable parameter is the altitude.

Achieving square pixels is beneficial because it simplifies hurdles that can occur 
in postprocessing. In reality, achieving the conditions necessary for square pixels 
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(GSDat = GSDct) is unlikely under real flight conditions. Even under the steadiest 
of conditions, the UAV will experience unpredictable changes in altitude and speed 
(Figure 3.6). Minor variations can be corrected, assuming that the quality of the UAV’s 
position and sensor orientation are recorded with sufficient fidelity. UAVs record 
navigational data via global positioning systems (GPS) and an inertial navigation 
system, which are complementary. Both have strengths and weaknesses. The inertial 
navigation system records orientation data at a frequency of ∼100 Hz or higher, 
whereas GPS normally records at one to two orders of magnitude lower (1–10 Hz). 
With GPS, the positional errors are minor, but tracking high dynamic movements is 
difficult, resulting in leaps of position (Figure 3.6). In such cases, a spline is fit to the 
GPS data in order to provide a smoothed estimate of the UAV location. Conversely, the 
inertial navigation system is very accurate over short periods, but the number of errors 
increases with time. Integrating the GPS and inertial navigation system observations 
further reduces navigation errors. The deeper the coupling, the more accuracy can 
be obtained from it, although there is greater risk of outliers impacting the accuracy. 
Research into integrated GPS and inertial navigation systems is a quickly developing 
field that offers the potential to utilize cheaper sensors without loss of accuracy.

Once the orientation, location, and altitude of the sensor at the time of acquisition of 
each scan line have been compiled, the image undergoes orthorectification (Figure 3.7). 
Essentially, the centerline of the GPS positional information is used to draw a line along 
the ground, which is then elevated according to the flight altitude. The sensor FOV 
is then projected at each step along the line onto the terrain, according to the sensor 
orientation. Because the area scanned by the projected FOV varies with the terrain, a 
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digital elevation model is involved. The resultant orthoimage is corrected such that the 
effects of the sensor orientation, camera attitude, and relief of the terrain have been 
removed, so that it can be matched to a map at the proper scale.

Modules for orthorectification are often available from the sensor manufacturer for 
a small fee. However, typically these are pushbutton solutions with minimal available 
options. Unlike with traditional remote sensing software, many of these modules are 
black box. Hence, it is difficult to determine the efficacy of the orthorectification 
approach and the algorithms used. Luckily, for typical cases in the agriculture and 
forestry sectors, their performance is more than adequate. Manufacturer software 
also provides tools for imagery viewing, radiance and/or reflectance conversion, and 
even preflight planning. Many postprocessing functionalities are also available from 
software, such as ENVI and RESE’s PARGE.

3.3  COMPONENTS OF A HYPERSPECTRAL UAV

Although commercial off-the-shelf integrated hyperspectral UAV systems are 
available, it is advisable that users familiarize themselves with the hardware 
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performance and limitations before making purchasing decisions. Often, budgetary 
constraints will elicit trade-offs in UAV endurance, feasible scannable area, sensor 
performance metrics, or all of the above. Adopters should have a clear understanding 
of these trade-offs in relation to their system requirements and must-haves. The 
aforementioned obligations are heightened with custom-designed systems, which 
the majority of research community projects involve. Typically, some degree of 
customization is required, especially for a research community such as this that pushes 
boundaries. Hence, producing a system that meets the user’s performance goals will 
likely require, at minimum, dealing with three parties: the sensor manufacturer, the 
UAV manufacturer, and a third-party engineering company providing integration 
services. Because hyperspectral UAVs are an atypical business case, product and 
service providers are unlikely to have a history of working with one another. Those 
undertaking custom systems at the cutting edge of commercial viability must have 
an appreciation for long lead times and tempered expectations.

FIGURE 3.7  (Top) Orthorectified scan line of Block Island, Rhode Island; (Bottom) 
Orthorectified scan lines of cranberry bogs in Massachusetts. Note that scan lines do not 
overlap in some cases, or overlap slightly but the movement of the UAV creates gaps between 
scan lines.
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For users, a UAV’s main appeal is the automatic piloting, affording many the ability 
to collect imagery with a minimum of flight training. For the relevant transportation 
safety authorities, however, this attribute is a drawback that must be compensated for. 
Hence, a considerable portion of UAV components are dedicated to providing pilot 
information (instrumentation) and manual control capabilities. For safety reasons, a 
human operator must be able to take manual control at any time. However, current UAV 
models tend to avoid this capability and will fly into dangerous situations unawares. 
Operating a UAV in autonomous mode requires the onboard electronics to know the 
UAV’s current position and motion elements (rotation and movement), and to provide 
proper adjustment of the craft’s flight controllers in order to achieve a higher-order 
maneuver (e.g., hover, climb, fly straight 250 m). Recent advancements in autopilots and 
GPS have made these devices more cost effective. Even the actions to perform in case 
of communication failure are automated (e.g., auto-return to base). Often, the preferred 
operation of a UAV in automated mode is to preset a number of waypoints that direct 
the UAV over the area to be scanned, for which the autopilot devises a flight plan and 
executes the maneuvers necessary to pass through each waypoint. To that end, the 
following hardware and software components are essential for any system (Figure 3.8):

•	 Frame: Provides mechanical support for all components.
•	 Propeller: Electronic DC motor that spins a shaped blade at >1000 rpm.
•	 Electronic speed controller: Regulated connection of power between the 

battery and the motors, using pulse width modulation. Pulses of full power 
are provided to the motor as a square waveform. At 50% duty cycle, the 
motor is on for half the time.

FIGURE 3.8  Typical components of a hyperspectral UAV.
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•	 Autopilot: Tasked with knowing the craft’s position and its motion elements, 
and providing flight control commands. Translates commands or motion 
tasks into control of the rotors or flight control surfaces.

•	 Radio transmitter: Manual or automatic controller transmission to the craft. 
If additional channels are available, this can be used to send commands to 
the sensor controller.

•	 Radio receiver: Intercepts radio transmitter commands.
•	 Power supply: Battery and power distribution components.
•	 Hyperspectral payload: The hyperspectral sensor, frame grabber, data 

processing, and data storage components.
•	 Sensor lens: Often a fixed-focus lens with minimal ability to vary the focus. 

Determines the field of view and aperture.
•	 Inertial measurement unit (IMU): A device that records the movement and 

rotation of the platform (i.e., six degrees of freedom).
•	 GPS: An antenna that receives positional information from a series of 

orbiting satellites. Often works in conjunction with the IMU.
•	 Ground control station: A software application running on an on-site 

computer, which has bidirectional communication with the UAV. It often 
displays real-time data of the UAV, acts as a virtual cockpit, and is used for 
mission planning.

•	 Gimbal (optional): A device to stabilize the sensor in a fixed position, 
regardless of the craft’s rotation.

3.3.1 I nertial Measurement Unit

An IMU is a self-contained unit containing three accelerometers, magnetometers, 
and/or gyroscopes, with each unit tasked with measuring force in one axis (each 
is placed orthogonally to the others). Measured forces are considered acceleration, 
which is used to determine velocity and position via dead reckoning. Due to the 
IMU integrating the signal over a finite time interval, it records the “average” 
acceleration, assuming this value occurred for the entire time frame. However, 
this assumption is poor and leads to accumulated errors in position, causing the 
IMU’s assumed location to drift from the UAV’s actual position. Sensor fusion of 
the acceleration data with positional data via GPS improves tracking accuracy. 
An IMU is hard-mounted to the sensor in order to record how it moves through 
space. Specifically, the IMU makes a best-guess estimate of the direction the 
sensor was pointing during the frame capture. The position of the UAV and 
the sensor orientation denote the ground location sampled per frame, which is 
essential for geocorrecting and orthorectification. Poor IMU performance leads 
to crooked or “wiggly” elements in the final imagery. Swapping out the low-cost, 
microelectromechanical system (MEMS) accelerometers and gyroscopes can 
be a tempting proposition because fiberoptic gyroscopes (FOGs) can offer 20× 
accuracy; however, base costs for a MEMS IMU are ∼$5000, and for a FOG base 
costs can be as high as $15,000–$50,000.
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3.4  DATA PROCESSING AND STORAGE

A hyperspectral imager generates more than 1 GB of data per minute. The volume 
of data requires a dedicated, high-speed processing resource for fast data capture; 
essentially, a stripped-down mini-PC with high data transfer input (such as Camera 
Link or GigE Vision), depending on the sensor. Solid-state hard drives have faster 
read/write times, and +500 GB slim versions are readily available. The mini-PC runs 
the manufacturer software for data capture and camera control. Preflight workflow 
should involve tuning the sensor data collection parameters for the day’s solar 
conditions. In addition, the performance of the sensor spectrally and spatially should 
be confirmed prior to flight. Thus, access to the data processing unit is necessary. It 
is of little value for the data processing unit to have a range of monitor outputs and 
ports for human interface devices. These elements merely consume space and add 
weight. A preferential solution is to remotely connect a laptop and use it to control 
the data processing unit.

3.5  SELECTING A UAV CRAFT

Daly (2009) of Jane’s Information Group lists approximately 190 different commercial 
UAV models. UAVs can range considerably in size and form (Figure 3.9), and 
encompass hybrid platforms, such as vertical takeoff and landing craft with wings 
and rotors. Blimps, paragliders, kites, and other exotic aerial vehicles have all been 
utilized, with much success, for remote sensing purposes. Everaerts (2008) presented 
one of the first inventories of UAV platforms and sensors used in remote sensing, 
and was followed by a number of authors who have developed reviews for certain 
application areas.

These include environmental research (Hardin et  al. 2010), wildlife research 
(Jones et al. 2006), forests (Dunford et al. 2009), and vegetated areas (Salamí et al. 
2014). While exotic UAVs are useful for certain applications, the mainstays of the 
hyperspectral UAV world are multirotor and fixed-wing UAVs. The only exception is 
helicopters, which are extremely suitable to hyperspectral applications because they 
have high payload capacity. Central Michigan University recently purchased a 6-ft. 
helicopter and hyperspectral camera, and AeroScout offers hyperspectral imaging 
service with a Specim’s AisaKESTREL. However, hyperspectral imagery acquisition 
via helicopter has seen infrequent adoption by the remote sensing community because 
helicopters are typically larger, less automated, and more mechanically complex, 
increasing upkeep costs.

Currently there is no generally accepted classification system for UAVs, despite 
many attempts in the defense (unmanned aircraft system access to national airspace) 
and civilian sectors (Herwitz et  al. 2004, Watts et  al. 2012). As a general rule, 
classification systems distinguish UAVs according to size and flight altitude. In 
terms of hyperspectral UAVs suitable for nonmilitary budgets, the range is fairly 
narrow because much of the civilian market does not offer the ideal payload-carrying 
capacity. Hence, for hyperspectral UAVs, a small UAV approaches the larger end of 
commonly sold systems. Table 2.1 provides a classification system for hyperspectral 
UAVs, divided into three classes: (1) low altitude, less than 5 kg; (2) low altitude, 
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5–25 kg; and (3) medium altitude, >25 kg. Most current hyperspectral UAV adopters 
operate a UAV at Class 1, mainly due to cost. Note that multirotors typically cost less 
than fixed-wing designs, but offer stricter payload capacities and lower flight times.

The discussion that generates the most heated opinions is that of fixed-wing versus 
multirotor UAVs. Regardless of the merits and downsides offered by each UAV type, 
the decision is not clear cut. Only via careful examination of one’s requirements, and 
foreknowledge of the locations one intends to survey, can a decision be made. Users 
with site access constraints or in heavily naturalized areas may opt for low takeoff 
and landing requirements in lieu of surveyable areas. Conversely, users intending to 
survey large tracts of land will need to invest in heavy-duty systems that will require 
logistical support. A relatively lightweight system, HYMSY (Suomalainen et al. 2014), 
consisting of a custom Specim 2.0 kg hyperspectral pushbroom system integrated 
into an Aerialtronics Altura AT8 v1 octocopter UAV, was able to achieve 2–10 ha of 
surveying per flight. Heavier-duty UAVs include those operated by Zarco-Tejada et al. 
(2012), who flew a Headwall Photonics Micro-Hyperspec (3 kg hyperspectral payload) 
on a fixed-wing Elimco E300 Viewer UAV with 1.5 hr endurance for 1000–2500 ha. 
The added endurance comes at a financial cost because the E300 Viewer is a Class 2a 

FIGURE 3.9  Examples of fixed-wing and octocopter hyperspectral UAVs.
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UAV whose cost reaches the higher end. The E300 Viewer UAV has a 5 m wingspan 
and weighs 13.5 kg on takeoff. By weight, the E300 Viewer is outside the hand-
launched fixed-wing class, requiring a specialized launcher that adds to the final cost.

Researchers can opt to start with smaller systems in order to demonstrate proof 
of concept or explore the frontiers of UAV applications. However, few phenomena 
of interest operate at spatial scales in the hundreds of meters. The ultimate goal of 
UAVs is to utilize the technology at traditional spatial scales, measured in square 
kilometers. Applications such as agriculture, forestry, mineralogy, and others seek 
data products at large spatial scales; hence, hyperspectral UAV adopters invested in 
research in these areas may require survey-grade equipment or larger platforms. At 
the higher end, the choice of UAV may consume an equal or greater amount of capital 
than the hyperspectral payload.

3.5.1 M ultirotor UAVs

The most simplistic design possible, a multirotor offers high versatility. Consisting of a 
core nexus of navigation electronics and control circuitry, rotors are physically distanced 
from the nexus by power-transferring metal spars. Multirotors come in quad, hexa, and 
octo configurations, with one or two rotors for each arm. The rotors operate in coaxial 
rotation, in which the propellers operate in opposite directions. Unlike helicopters, 
where flight control is achieved by varying the pitch of the blades, platform motion 
is achieved by varying the propeller speed. Hovering is possible by applying equal 
thrust to all rotors, with half turning clockwise and half turning counterclockwise. Pitch 
and roll is achieved by applying more thrust to one rotor and less to its diametrically 
opposed rotor. Multirotors lack avionic elements that provide lift; hence, they rely 
on a constant source of power to provide the thrust necessary to counteract gravity. 
Consequently, endurance is considerably lower, and there are few recovery options upon 
power failure. Multirotors compensate for their poor power-to-lift ratio through ease 
of use. Launchable from virtually anywhere, multirotors do not require landing strips, 
and are often deployed directly on site. Hence, the higher power drain can be partially 
compensated for by near-immediate surveying of the area of interest.

Because rotors provide the lift, there is considerably less need to modulate the 
exterior of the craft to minimize wind resistance. The larger planar profile provides 
a greater interface for wind and turbulence, which exposes the craft to greater 
instability in high winds. However, the openness of multirotors provides benefits 
for sensor integration because space constraints are relaxed. Sensors are easy to 
mount beneath the central nexus, with room to spare. Often, this added space is 
taken advantage of with the addition of a gimbal. A gimbal physically disconnects 
the sensor package from the movements of the craft. If the craft were to roll due to 
high winds, the gimbal would sense the movement and would operate servers to 
offset the craft’s movements in three dimensions. Outside of vibration dampening 
and stabilization, camera controllers allow manipulation of the camera field of view 
while in flight. Video production companies often utilize these systems to provide 
aesthetically pleasing shots; however, their use in surveying fields is less prevalent. 
Sturdy legs allow the craft to land without placing the weight of the multirotor on 
the sensor.
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Sensors are placed below the center nexus in order to maintain the center of 
gravity through the midpoint of the unit. It is critically important that the center 
of gravity be through the midpoint to ensure equal weight distribution to each 
rotor. Unbalanced systems can place continued strain on certain rotors, which 
can be magnified by flight maneuvers. Since the thrust output of the rotors often 
approaches maximum performance, additional load runs a severe risk of burnout. 
Rotor failure is an ever-present risk. Advanced quadcopter systems have software 
to detect and correct for engine loss temporarily as the unit lugs home. Hexa- and 
octocopters are not immune to flight control loss by sudden rotor failure, but the 
extra rotors have a more well-distributed thrust profile, allowing continued flight 
with one rotor inoperable. The extra rotors provide more lift, at the expense of 
added weight and faster battery drain. Anyone with experience with batteries knows 
that the output drops precipitously when drained. Declining power output induces 
a feedback loop because the multirotor insists on greater power to compensate for 
declining altitude. Careful attention to battery level, warning devices, or other fail-
safe mechanisms are crucial for ensuring that the multirotor does not mysteriously 
fall from the sky.

3.5.2  Fixed-Wing UAVs

Fixed-wing UAVs approximate the design of a traditional airplane. However, 
relaxing the size of the body and payload compartments permits a wide range of 
unique aerodynamic forms. The only commonality to all fixed-wing UAVs is a 
core body and two wings. Tailless platforms, delta wings, and propellers mounted 
at the front and back are design choices soliciting compromises in aerodynamics 
(fuel efficiency), payload capacity (size and weight), redundancy (multiple control 
surfaces), resistance to atypical operating conditions (stall and spin control), and flight 
control (maneuverability). Discussion of the relative merits of each design choice are 
beyond the scope of this chapter.

Regardless of design choices, all fixed-wing UAVs gain a substantial portion of lift 
from their wings. Wings are shaped into an airfoil to provide a high lift-to-drag ratio. 
As air flows over them, driven by the airplane’s forward motion, lift is generated. 
Beyond the stall speed of the fixed wing, altitude climbs; hence, most fixed-wing 
UAVs require an initial boost of speed or runway to gather the speed necessary 
to generate lift. Forward propulsive force is provided by one or more propellers, 
typically mounted through the UAV’s central axis. These propellers convert rotary 
motion into forward motion of the plane, thus forcing air movement over the wings. 
When under flight, hinged control surfaces (ailerons, elevators, flaps, brakes, and/or 
rudders) mounted on the wings or tail fins can shift from flush with the wing to deflect 
the flow of air. The force is unbalanced, and thus shifts the UAV around three axes 
of rotation: yaw, roll, and pitch. Forcing the elevators upward pushes the fixed-wing 
UAV’s nose vertically; changes in the vertical orientation of the nose are denoted 
pitch. Yaw changes the direction the nose is pointing horizontally, and occurs by 
adjusting the rudder or ailerons. In roll, the direction of the nose is unchanged, but 
the fixed-wing UAV’s body rotates. Increasing the lift on one wing and decreasing it 
on the other causes roll.
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The fixed-wing UAV’s form is conducive to remaining aloft, as long as forward 
thrust is provided and turning maneuvers or climbs are moderated. At steep gradients, 
when the wings are not perpendicular against gravity, the lift provided by the wings 
is insufficient, and the fixed-wing UAV descends. More troublingly, turbulence, wind, 
or air current can push the fixed-wing UAV beyond its recovery point, causing a stall, 
spin, or even loss of flight control. Hence, flight controllers are designed to only 
attempt maneuvers within a clear safety margin. The inability of a fixed-wing plane to 
adhere to linear waypoints is crucially important to note. Unlike a multirotor, which 
can move independently in each dimension, a fixed-wing UAV primarily moves 
forward and is nudged along the other two dimensions. Consider a fixed-wing UAV 
gaining altitude: Climbing maneuvers are moderated by the thrust limits and the pitch 
that can be maintained without inducing a stall. Gains in altitude are relatively minor 
compared to the forward movement, so the fixed-wing UAV must execute a bank in 
order to return home before radio reception is lost. The resultant maneuver is a spiral 
upward to the operating altitude.

Takeoff and landing for a fixed-wing plane are the two most dangerous maneuvers. 
In both cases, the area must be free of obstructions, and preferably soft. A 500 m 
patch of flat ground is not an unreasonable requirement for landing, depending on 
the UAV size class. The landing strip should also be oriented to minimize cross 
wind, preferably descending while flying into the reduced velocity. Unfortunately, 
landings are often not autonomous, but an acquired skill. Thus, the easiest controlling 
perspective is to view the descending fixed-wing UAV nearly head on. The operator 
must be capable of assessing the velocity of the fixed-wing UAV relative to its rate 
of descent, and make adjustments accordingly. The difficulty in finding a suitable 
landing strip has led to many alternative UAV landing devices, such as nets, which 
are often employed in off-base military operations. Other options include parachute 
recovery systems. When the fixed-wing UAV reaches a low altitude, a parachute 
is deployed from a top compartment, enabling a descent at low speed. However, 
the descent is not controlled, and wind will shift the landing location considerably 
far from the spot of deployment; hopefully not into water, trees, or other obstacles 
detrimental to electrical components. Wind will also not stop once the UAV hits 
the ground, and drag damage can be substantial. Quick recovery or a parachute 
detachment system are options. Both belly landings and parachute recovery entail 
risks. In belly landing, the underside must be protected by either structural support, 
a payload sunken into the interior, and/or a retractable payload shield. In parachute 
landing, the UAV may land in an inopportune location or on an inopportune 
component, and the parachute deployment may interact with the propeller or not 
deploy properly, providing poor support.

For takeoff, a hand launch is likely insufficient to provide enough initial velocity 
to surpass the stall speed, especially for platforms weighing greater than 5–10 kg. 
Traditionally, a bungee of a pneumatic catapult is utilized to accelerate the craft along 
a rail to 10–20 m/s velocity. The safety of the catapult is of grave concern due to the 
forces involved. Rupture of a pressure vessel or snapping of a bungee cord can send 
catapult material in random directions at high velocity. Hard hats and eye protection 
should be worn throughout the UAV flight, and nonessential personnel should be 
offset at a safe distance.

(c) ketabton.com: The Digital Library



65Building a UAV-Hyperspectral System II

As alluded to earlier, fixed-wing UAVs maintain lift under loss of control and power 
failure. Under these circumstances, the fixed-wing plane becomes an uncontrolled 
glider. Only in the most fortunate of circumstances will a gliding UAV be recoverable 
with minimal damage. An added benefit of a low profile against the wind is flight 
stability. A fixed-wing UAV has superior handling of high wind conditions and 
turbulence on account of its minimal profile against the wind. The downside is 
that the interior payload bay is constricted in volume. Enabling all components to 
fit becomes a game of Tetris. On a practical level, the situation is even more dire, 
considering the need to insert and remove components for maintenance. Space is at 
a premium in fixed-wing UAVs. Accounting for the space requirements of all “hard” 
components may still yield complications when the physical locations of wiring and 
connectors are added.

3.6  SPECIAL FLIGHT OPERATIONS CERTIFICATE INSURANCE

Around the world, government agencies regulate travel according to the complexity 
and liability of the mode of transport. Air travel has some of the most stringent 
regulations, and UAVs are no exception. It is the responsibility of the UAV operator to 
be aware of and comply with their local regulations. In Canada, UAVs are regulated 
federally by Transport Canada, which outlines the methods and requirements to gain 
authorization to fly. Many government agencies distinguish between recreational 
UAV flight (i.e., hobbyists) and commercial UAV flight. Commercial UAV flights are 
defined as having financial implications; work, research, and all flights for purposes 
beyond the joy of flying typically fall under the realm of commercial. Furthermore, 
regulations may vary by UAV weight class, operator (individual vs. commercial 
company), intention (manufacturer research and development), or other criteria. UAV 
operators must prove that they meet or exceed the regulations in order to petition for 
authorization, which is granted case by case. If operational approval is granted, the 
operator is provided with a certificate documenting their successful application and 
outlining all conditions. The operator agrees to abide by the details outlined in their 
application; it is not a blanket permission. As such, applications are considerably 
information dense, outlining the type of UAV to be flown, its safety features, the 
personnel involved, their training and experience, the plan for securing the site, 
preparations against hazards, response to possible complications, contingency plans, 
avoidance of obstacles, insurance details, geographical locations, times of day, dates 
requested, and any other metrics relevant to safe flight operations. UAV operators 
not in compliance with conditions of the certificate, such as not abiding by the set 
flight dates or not ensuring that the UAV safety devices are in working order, will be 
charged with penalties for noncompliance, even in the event of a successful flight.

Although the UAV regulation regime is constantly changing, there are standard 
requirements that are likely to remain for the foreseeable future. Specifically, all 
UAV operations must be within visual line of sight at all times. The operators must 
be positioned at a vantage (preferably high) that offers an unrestricted view of the 
airspace the operator intends the UAV to operate within and beyond, in case of loss 
of control. Views of the UAV are not to be obstructed by trees. Furthermore, the UAV 
cannot be operated within a distance buffer from airports, built-up areas, controlled 
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airdromes, forest fire areas, moving vehicles, and other restricted locations. The UAV 
must operate under a certain altitude threshold and cannot exceed set speed limits. 
The operators must possess a certain amount of liability insurance, and the operator 
must have undergone training.

The regulations related to hyperspectral UAVs (nonrecreational UAVs between 2 
and 25 kg in weight) were relaxed by Transport Canada in November 2014, relieving 
the operator of the requirement to apply for a Special Flight Operations Certificate 
(SFOC) if the operator can meet all 58 conditions outlined under the Exemption from 
Sections 602.41 and 603.66 of the Canadian Aviation Regulations. If the operator 
meets these conditions and submits a notification to Transport Canada prior to the 
commencement of operations, outlining their contact information, UAV model, 
description of operation, and geographical boundaries of operation, they do not need 
to apply for an SFOC.

3.7  POSTCOLLECTION PROCESSING TO REFLECTANCE

All sensors, whether multispectral or hyperspectral, measure incoming light as 
radiance. However, radiance depends on the solar output, viewing geometry, and 
atmospheric conditions, whereas reflectance is a property closely associated with the 
concentration and spectral properties of the compound(s) within the sensor’s field 
of view. It is assumed that the sensor manufacturer has provided the radiometric 
calibration files necessary to convert the sensor digital number into radiance by 
wavelength. Without normalization against a known source, it is impossible to convert 
the radiance due to the considerable variations in wavelength dispersion device and 
detector efficiency.

In order to convert the radiance recorded by the hyperspectral UAV into reflectance 
data, preprocessing is required. Approaches to preprocessing radiance into reflectance 
fall under two categories: (1) measurement or simulation of the downwelling radiance, 
or (2) transformation of recorded values into a known reflectance. These approaches 
are the same as with the multispectral system, although the spectral resolution 
requirements are heightened. Interestingly, the user’s ability to discern an improper 
radiance-to-reflectance conversion is heightened for hyperspectral data because the 
spectral resolution permits the shape of the full spectral curve of known objects 
to be resolved. The human eye-brain combination is unparalleled at distinguishing 
subtle irregularities, and can be quite useful when comparing reflectance conversion 
results against known spectra. Perhaps the simplest means of conversion is to record 
the spectra of a white Lambertian calibrated reference during flight, alongside pre- 
or postflight measurement of dark current. Dark current can easily be collected by 
taking an image snapshot with a lens cap on prior to flight. Reflectance can simply 
be determined according to the following equation

	
Reflectance

Digital Number Dark Current
White Reference Measure

=
−

mment Dark Current−

Practically, the ability to record a white reference in flight is constrained by 
manufacturer size limits. The gold standard in calibrated white reference, Spectralon 
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material, costs upward of thousands of dollars per square foot. In order to record 
at least one pure pixel of a calibrated white reference, the area coverage must be at 
least 4× the ground sampling resolution. Acquiring a white reference of this size at 
reasonable cost is challenging, save for the narrowest, lowest-altitude FOV sensors. 
Ground sampling of white references prior to flight can be performed because the 
differences in atmospheric absorption between the surface and flight height are often 
minor. Care should be taken to avoid shadows or glare from surrounding objects.

Lower-cost materials can be utilized at the cost of reflectance purity (i.e., reflectance 
lower than 95%) and non-Lambertian behavior (Hruska et al. 2012). A variety of 
calibrated tarps and targets of known reflectivity less than 100% have been utilized 
(Li et al. 2015). For instance, the original white reference, BaSO4, can be combined 
with flat white paint to produce a large target area of near 100% reflectance (Knighton 
and Bugbee 2000). An added benefit of a less-than-100% reflective material is that the 
sensor detection range can be focused on the range of the objects under investigation. 
If the disparity between the calibrated target and the objects is large, the sensor must 
be adjusted to detect both, as opposed to detection of subtle variations within the 
object of interest. Typically, the sensor integration time or aperture is adjusted such 
that the brightest object(s) only reaches 85% saturation of the sensor.

Alternatives to correcting against a known target are dark object subtraction, internal 
average relative reflectance, log residual, and flat field correction. In practice, achieving 
good results via these algorithms is difficult, and depends mainly on the quality of 
the objects within the image. Overall, these methods should be avoided in favor of 
empirical line calibration or radiative transfer modeling, if possible. Empirical line 
calibration has the benefit of user recording of spectra under the same conditions as the 
flight acquisition. Using a high-precision instrument, the reflectance of noncalibrated 
sources in the final imagery can be recorded for the purpose of aligning the imagery 
radiance. However, the gold standard for atmospheric correction remains radiative 
transfer modeling. Software packages such as ENVI offer the quick atmospheric 
correction (QUAC) and fast line-of-sight atmospheric analysis of spectral hypercubes 
(FLAASH) algorithms, which support hyperspectral sensors such as HyMap, AVIRIS, 
HYDICE, Hyperion, Probe-1, CASI, and AISA. FLASSH is based on MODTRAN4 
calculations, which use the viewing and solar angles and the mean surface elevation 
of the measurement, assuming a certain model atmosphere, aerosol type, and visible 
range. These one-touch approaches offer excellent performance for known sensors.

The drawback of commercial-grade atmospheric correctors is that they are often 
limited to specific-use cases and sensors of known properties. Hyperspectral UAV 
sensors are so recent that they are not explicitly addressed by commercial software. 
Given the rigid nature of commercial software, it is challenging to customize the 
atmospheric correction module for custom sensors. Many modules require the 
input data to be pre-converted to radiance. Furthermore, the center wavelength 
and full width at half maximum (FWHM) must be defined in order to resample 
the MODTRAN solar spectrum to the wavelength sensitivities of the sensor. The 
algorithms must further be capable of simulating atmospheric absorption at various 
sensor heights. Assuming the absorption properties of the whole atmosphere would 
inject significant systemic bias into the final results. Ideally, the effects of sensor 
height would be modeled at near-meter sensitivity for UAVs.
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3.8  CONCLUSIONS

Insiders tend to characterize the level of specificity provided by hyperspectral UAVs 
as useful, but caution that hyperspectral sensors will not replace other sensors in 
the future. The added costs of hyperspectral sensors, in terms of complexity of use, 
weight, and cost, can only be justified in a limited range of applications. Constrained 
by these factors, hyperspectral UAV proponents are poised to be early adopters 
in the foreseeable future. Greater developments are expected on the low-weight 
quadracopter integrated with a RGB- or near-infrared (NIR)-sensitive modified 
RGB camera. Commercial off-the-shelf technologies for hyperspectral UAVs will 
continue to develop at a slow pace, offering greater choices of hardware and even 
fully integrated systems targeting average users. Users with unique requirements 
will still need to select and integrate electronic components, and even develop 
software. Considering that adopters will continue to be the minority, a critical mass 
of enthusiasm and development may never materialize.
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4 LiDAR and Spectral Data 
Integration for Coastal 
Wetland Assessment

Kunwar K. Singh, Lindsey Smart, and Gang Chen

4.1  INTRODUCTION

Coastal environments are unique, with highly diverse natural communities that 
provide several benefits to both humans and wildlife. These natural communities 
are increasingly threatened by human population growth, amenity migration, 
unsustainable land-use practices, and the increasing demand for natural resources. 
Additional factors, such as direct inundation from sea-level rise and saltwater 
intrusion, compound the threats to coastal environments (Gornitz 1995; Hackney and 
Yelverton 1990; Pearsall and Poulter 2005; Poulter et al. 2009). Inundation from sea-
level rise is anticipated to have a significant impact on coastal environments (Hauer 
et al. 2016; Karegar et al. 2016; Moorhead and Brinson 1995). Saltwater intrusion, 
another concern of sea-level rise, is the movement of saltwater into traditionally 
freshwater areas through both natural and artificial surface water conduits, such as 
streams, rivers, ditches, or canals (Ardon et al. 2013). This saltwater intrusion has 
resulted in a phenomenon referred to as marsh migration, which is the landward 
movement of salt marsh into areas that were once primarily fresh forested wetlands, 
leaving behind what many have come to refer to as “ghost forests” (areas of standing 
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dead trees within newly formed salt marshes) (Pearsall and Poulter 2005). This 
transition from forest to marsh is highly variable both spatially and temporally, and 
is dependent upon local factors such as vertical accretion, subsidence rates, and other 
anthropogenic stressors. There is significant uncertainty regarding the implications 
of these impacts on the continued persistence of coastal wetland ecosystems and 
their ability to continue to provide the benefits upon which human communities 
rely. The spatiotemporal variability of these processes makes it difficult to develop 
sound land-use management practices and policies (Enwright et  al. 2016). This 
requires an adaptive land-use policy and management decisions, which depend on 
accurate methodologies to quantify ecosystems (Hudak et al. 2012; Singh et al. 2016). 
Consequently, quantifying fine-scale spatial patterns of coastal wetlands, particularly 
those wetlands at risk from saltwater intrusion, is crucial for understanding the 
continued persistence of coastal ecosystem services.

Integration of data from multiple remote sensing platforms is a potential solution 
to quantifying coastal wetland. Different platforms can complement one another 
and fill data gaps; for example, fusion of LiDAR and spectral imagery (Chen et al. 
2004; Donoghue and Watt 2006; Hudak et al. 2002; Li et al. 2011; Singh et al. 
2012). Spectral data capture the 2D spectral characteristics of the Earth’s surface, 
whereas LiDAR measures the 3D arrangement of the Earth’s surface in point cloud 
or continuous wave format; therefore, complementing the limitations of spectral 
data with several advantages. First, LiDAR is a source of high-resolution and 
highly accurate point cloud data. With a small footprint system, LiDAR has the 
capacity to reach a level of accuracy as high as that of conventional field surveys. 
Second, the intensity component of LiDAR data is useful to either pan sharpen 
spectral data or provide additional information for the segmentation of features in 
the scene (Campos-Taberner et al. 2016; Singh et al. 2010). Third, environment and 
atmosphere have little impact on LiDAR data, unlike spectral imagery, allowing 
LiDAR data collection under a wide range of environmental conditions (Jensen 
2007). Despite its ability to capture vertical structural components along with the 
above advantages, LiDAR alone is not sufficient for estimating the overall condition 
of ecosystems.

This makes data integration essential for utilizing the complementary 
characteristics of both data sources for extraction and classification of Earth objects 
(Zhang and Lin 2017). Data integration has been explored in natural systems for 
mapping forest structural attributes, plant species distribution, and forest fuel 
estimation (Alonzo et al. 2014; Chust et al. 2008; Elaksher 2008; Garcia et al. 2011; 
Swatantran et al. 2011). In urban systems, spectral and LiDAR data fusion has been 
applied to land-cover mapping, 3D modeling, and building footprint extraction 
(Awrangjeb et al. 2010; Singh et al. 2012; Sohn and Dowman 2007). Multiple factors, 
such as extent, targeted application, spatial and spectral resolution, temporal match, 
and fusion methods, play a decisive role in the integration of spectral and LiDAR 
data (Zhang and Lin 2017). For example, an evaluation of trade-offs between data 
volume and thematic map accuracy in Singh et al. (2012)’s study suggests that a spatial 
resolution of 5 m for LiDAR surface models offers a balance between computational 
efficiency and classification accuracy for mapping land cover over large and spatially 
heterogeneous regions.
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Numerous methods have been proposed for integrating these data sources. 
Applications tend to be data driven, therefore dictating the data characteristics, 
processing, and integration methods. For example, estimation of vegetation 
parameters such as tree species, height, and forest types relies on spatial and spectral 
resolution of spectral data and LiDAR point spacing. Since field data are collected at 
the plot level, multivariate and machine learning analyses are often applied to model 
vegetation parameters. Zhang and Xie (2012) used a neural network approach with 
tree-level survey data for detecting individual trees, estimating tree metrics, and 
identifying their species types using LiDAR with hyperspectral imagery. Pixel-based 
and object-based methods are often used to map land cover. Haala and Brenner (1999) 
applied pixel-based techniques to multispectral and LiDAR-derived digital surface 
models to identify buildings and trees. Gamba and Houshmand (2002) analyzed 
synthetic aperture radar (SAR), LiDAR, and aerial imagery for extraction of land 
cover. Likewise, Chen et al. (2009) employed an object-oriented classification using 
multispectral pan sharpened QuickBird imagery and LiDAR data over an urban area.

We integrate LiDAR and spectral data to map coastal wetland land-cover types. The 
main research objectives of this study were to (1) quantify the important vertical and 
horizontal structural metrics for different wetland compositional types, (2) assess the 
ability to differentiate wetland compositional types based on LiDAR and spectral remote 
sensing metrics using the random forest algorithm, and (3) evaluate model performance.

4.2  METHODS

4.2.1 S tudy Area

Goose Creek State Park is located in Beaufort County, North Carolina (Figure 4.1). It 
covers 6.77 km2 just off the Pamlico Sound in North Carolina’s Outer Coastal Plain. 
The park contains extensive marshes, inlets, and creeks on the northern side of the 
sound. It has been the site of timber production, commercial fishing, and small-scale 
subsistence farming. Lumber companies acquired extensive tracts of land along the 
creeks and harvested vast stands of old growth bald cypress and longleaf pine. Much 
of the land that is now part of the park was once clear-cut for timber. Evidence of the 
timber industry, such as remnants of piers and loading docks up and down the creek, 
remains at the park today. There are marshes at the shoreline that transition to riverine 
and depressional swamp forests further from the shoreline at higher elevations.

4.2.2 D ata Sets Used

Ecological training and validation data were obtained from North Carolina Division of 
Coastal Management’s (NC DCM’s) refined version of the National Wetlands Inventory 
(NWI) data set. Wetlands were developed with a minimum polygonal mapping unit of 
1 acre, using NWI data, a hydrography line data set, county soils surveys, and 30 m 
satellite imagery (North Carolina Department of Environmental Quality, http://deq.
nc.gov/about/divisions/coastal-management). In addition to the refined NWI data set, 
we also used LiDAR and aerial color infrared (CIR) imagery collected by the National 
Agriculture Imagery Program (NAIP) for the analysis (Table 4.1).
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4.2.3 L iDAR Data Processing

Integrating LiDAR and spectral data requires preprocessing individual data sets to 
fully utilize their complimentary information. LiDAR data preprocessing includes 
(1) removal of artifacts (noise points), (2) classification of LiDAR points into ground 
and nonground, and (3) data quality check. Removal of artifacts is recommended to 
identify and eliminate noise points that are caused by transmission lines, atmospheric 
aerosols, birds, or low-flying aircraft. These points are usually outside the range of 
realistic elevations.

We used airborne mapping LiDAR that was acquired in LAS file format with 
points classified as vegetation and ground (Table 4.2) to develop the digital elevation 

Goose creek state park
0.5 0 0.5 KM0.25

FIGURE 4.1  Study area of Goose Creek State Park with an inset image of a typical salt-
affected forested wetland.

TABLE 4.1
Data Sets Used in the Analysis

Data Set Date Source Derived Metrics

LiDAR January to 
February 2014

North Carolina Floodplain 
Mapping Program

Vegetation and terrain 
metrics

Color infrared 
imagery

October 2014 NAIP, USDA Farm 
Service Agency

Normalized difference 
vegetation index

NWI data 1999–2010 North Carolina Division 
of Coastal Management

Ecological training 
and validation data
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model (DEM) and normalized heights and metrics. LiDAR data processing was 
completed using GRASS 7.0.1 (Neteler et al. 2012). The ground point locations were 
imported, and the multiscale curvature-based classification algorithm (v.lidar.mcc) 
was run over the ground points to remove any spurious classifications of vegetation 
as “ground,” which can often happen in areas with dense wetland vegetation (Evans 
and Hudak 2007). Next, we imported the ground points using v.surf.rst at 3 m spatial 
resolution to create the DEM. Multiple classes with different vegetation types were 
merged using v.in.lidar and v.patch, respectively, to create a merged canopy point 
layer. We exported the merged point layer to a text file using v.out.ascii. The merged 
canopy file was brought back in using r.in.xyz, calculating each of the desired LiDAR 
metrics at a 3 m resolution. The spatial resolution was determined by selecting the 
finest resolution possible to detect fine-scale variability in vegetation, while also 
maintaining the ability to characterize vegetation canopy. A resolution of 3 m was 
deemed satisfactory because the number of vegetation returns for each 3 m cell 
ranged from 0 to 76, with an overall average of 14 vegetation returns per cell. Then, 
we subtracted the interpolated DEM from the height metric to normalize estimates 
of height (Figure 4.2).

We derived metrics representing terrain characteristics from the LiDAR data. 
These included flow accumulation, topographic wetness index (TWI), and distance 
to shoreline (Table 4.3). Flow accumulation represents the accumulated weight of 
all cells flowing into each downslope cell in the output raster. The elevation model 
is a prerequisite for flow accumulation and TWI. TWI is a function of the slope and 
upslope contributing area and the flow direction. The TWI is defined as

	
ln

tan
a

b











where a is the local upslope area draining through a certain point per unit contour 
length, and tan b is the local slope (in radians).

TABLE 4.2
LiDAR Data Specifications

Content Specification

Survey data January 2014

Program North Carolina Floodplain Mapping Program

Altitude above ground 1676 m

Multiple returns Four returns per pulse

Swath width 1025 m

RMSEza 11.7 cm

Average post spacing 0.7 m

Average point density 2.0/m2

a	 Root mean square error in z.
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We generated the distance to shoreline in two parts. First, we digitized the shoreline 
using the elevation data as reference to identify the shoreline contour. Then, a simple 
Euclidean distance from this linear shoreline feature was derived as the final metric. 
LiDAR-derived vegetation metrics were calculated by binning the laser return points 
at the selected cell size resolution according to the univariate statistics of interest, 
and were used to characterize vegetation canopy structure. The ability to detect 
soil moisture or potential inundation is an important abiotic factor since it controls 
wetland extent and function. Some research has explored the applicability of LiDAR 
intensity values to detect soil saturation. Therefore, we imported intensity values at 
the 3 m resolution. An enhanced Lee filter was applied to the raw intensity values in 
an effort to reduce speckle but retain edges or transition zones in the intensity data. 
The enhanced Lee filter was passed over the intensity values multiple times, with 
increasing window size each time 5, 7, and 9 number of cells (Huang et al. 2014).

4.2.4 S pectral Data Processing

Spectral data preprocessing routines are necessary to improve the spectral quality 
of imagery for accurate outcomes and for maximizing information through data 
integration. Routines include geometric and radiometric corrections, and the 
transformation of the image to a specific map projection system. Errors in the relative 
position of pixels in imagery caused by the imaging system and imaging conditions 
are addressed through geometric corrections. Radiometric correction addresses 
errors in the imagery that occur due to sensor sensitivity, sun angle and topography, 
and atmospheric interference (Jensen 2007). The CIR images were provided at 1 m 
resolution and were resampled to 3 m resolution using a bilinear cubic interpolation to 
match the resolution of the LiDAR data. We performed orthorectification by selecting 
invariant features within the study area, specifically road centerlines and parking, 
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NDVI calculationTerrain metrics
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FIGURE 4.2  Overview of the data preparation and classification process.
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and then using these features as tie points in both the LiDAR data and the spectral 
data to ensure proper alignment of the two data sources. We then used CIR images 
to calculate the normalized difference vegetation index (NDVI). NDVI utilizes the 
near-infrared spectral band and the red spectral band, important spectral bands for 
identifying characteristics of vegetation greenness and health. Finally, we classified 
different input layer combinations using the random forest algorithm.

4.2.5 D ata Integration and Analysis

Classification algorithms that are frequently used to integrate these data include 
random forests, gradient boosting, classification and regression trees, and object-
based image analysis, among others (Chen and Hay 2011; Jakubowski et al. 2013). 
We used the random forest algorithm to map land-cover classes of coastal wetlands 
(Table 4.4). The random forest algorithm is a decision tree classification and has been 
applied successfully in ecological research and land-cover mapping (Breiman 2001). 
It is especially suited for classification of multisource remote sensing data because 

TABLE 4.3
Random Forest Models, Input Variables, and Total Accuracy

Sources Variables Random Forest Models

1 2 3 4 5 6 7 8 Final
Distance to shoreline x x x x x

Spectral-data-
derived metrics

Normalized difference 
vegetation index (NDVI)

x x x x x x

LiDAR-derived 
vegetation metrics

Minimum vegetation height x x x x x

Total vegetation returns x x x x x x

Coefficient of variation of 
vegetation height

x x x x x x

Maximum vegetation height x x x x x

Mean vegetation height x x x x x x

Standard deviation of 
vegetation heights

x x x x x x

Range of vegetation heights x x x x x x

Variance of vegetation 
heights

x x x x x x

Skewness of vegetation 
heights

x x x x x

25th percentile heights x x x x x x

50th percentile heights x x x x x x

75th percentile heights x x x x x x

Mean intensity x x x x x x

LiDAR-derived 
terrain metrics

Elevation x x x x x x

Flow accumulation x x x x x x

Topographic wetness index x x x x x

Accuracy (%) 42.1 51.3 50.7 61.2 55.4 53.3 56.4 61.8 61.9
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it is insensitive to nonnormal and noisy data. It also fits a predetermined number of 
classification trees, and then combines the predictions across all trees. The majority 
rule across all decision trees determines the accuracy of output classification. The 
number of input variables is user defined. We performed data manipulation and 
analysis in R statistical software (R Core Team 2013). For the classification, we 
used the randomForest R statistical software package (Lawrence et al. 2006). The 
National Wetlands Inventory data set was used to identify and select training samples. 
A bootstrapped sample of the original training data was used to train the model. 
Test set accuracy was determined using cross-validation of the remaining training 
samples (out-of-the-bag samples). Variable importance was estimated by randomly 
permuting the value of out-of-the-bag samples for variables. The error increases as 
the particular variable is removed from the model, determining the importance of that 
specific variable. Samples that were not used in the training were used as test samples 
to perform accuracy assessment.

Preliminary exploratory data analysis was performed to initially identify 
important variables and avoid overfitting the model as well as to reduce collinearity 
among predictor variables. One such exploratory test was the Kolmogorov-Smirnov 
(KS) test, a nonparametric test of the equality of 1D probability distributions 

TABLE 4.4
Target Land-Cover Classes and Descriptions

Land-Cover Types Descriptions

Bottomland hardwood forest Riverine forested or occasionally scrub/shrub communities 
usually occurring in floodplains that are semipermanently to 
seasonally flooded. In bottomland hardwoods, typical species 
include oaks, sweet gum, river birch, and occasionally pines.

Depressional swamp forest Very poorly drained nonriverine forested or occasionally scrub/
shrub communities that are semipermanently or 
temporarily flooded.

Estuarine forest A forested wetland community subject to occasional flooding by 
tides, including wind tides.

Estuarine scrub/shrub Any scrub/shrub community subject to occasional flooding by 
tides including wind tides.

Headwater swamp Forested systems along the upper reaches of first-order streams.

Riverine swamp forest Riverine forested communities usually occurring in floodplains 
that are semipermanently to seasonally flooded. In swamp 
forest systems, typical species include cypress, black gum, 
water tupelo, and red maple.

Salt-affected swamp forest Riverine forested communities as described above, but 
influenced by saltwater intrusion—either acutely or via 
long-term inundation.

Salt/brackish marsh Any salt marsh or other marsh subject to regular of occasional 
flooding by tides, including wind tides as long as this flooding 
does not include hurricane or tropical storm waters.

Upland Nonwetland areas.
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(Smirnov 1948). This test can be used to compare a sample with a reference 
probability distribution or to compare two samples. The KS statistic quantifies 
a distance between the empirical distribution function of the sample and the 
cumulative distribution function of the reference distribution, or between the 
empirical distribution functions of two samples. The magnitude of the KS statistic 
helped in identifying a subset of variables from all the input variables. Cumulative 
distribution functions were drawn for these variables for each of the wetland types 
being modeled to visualize differences across types.

4.3  RESULTS

4.3.1 E xploratory Data Analysis

Exploratory data analysis and KS tests showed that there were several spectral and 
structural attributes that could be used to distinguish between wetland compositional 
types. The KS statistics suggested that all of the potential predictor variables were 
significantly different between wetland types. The cumulative distribution functions 
for each potential predictor variable and compositional type were evaluated for 
discernable relationships between variables and type (Figure 4.3). For example, the 
cumulative distribution functions for the distance to shoreline variable differ across 
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FIGURE 4.3  Cumulative distribution functions for wetland types and variables.
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wetland types (Figure 4.3). The salt or brackish marsh, which is associated with areas 
very close to shore, is significantly different from the upland or bottomland hardwood 
forests, which tend to be located at a larger distance from the shore. Differences 
such as these are also visible in the NDVI, minimum heights, and maximum heights 
predictor variables.

4.3.2 R andom Forest Classification

We observed significant variability in mapping error rates across wetland types. While 
estuarine scrub/shrub and riverine swamp forest classes had the lowest error (i.e., less 
than 30% error), salt-affected riverine swamp forest and estuarine forest showed very 
high error rates (∼80% error and over) (Table 4.5). The most important variable for 
the classification was distance from the shoreline, followed by the terrain, LiDAR, 
and spectral variables. Of the LiDAR variables, the total number of vegetation returns 
(as a measure of vegetation density), the range in vegetation heights, and the mean 
vegetation heights contributed the most (Figure 4.4).

We observed the highest model performance when LiDAR, multispectral remote 
sensing, and terrain metrics were combined (final model), with an increase of 6% 
accuracy over the spectral and terrain model (i.e., Model 5) (Table 4.3). The LiDAR 
model alone (Model 2) performed the best of the three single data source models 
(Model 1, spectral imagery alone; Model 3, terrain alone). One hundred permutations 
of the final random forest fitted model were run to analyze the permutation importance 
of all predictor variables in the model (Figure 4.5). The contribution of predictor 
variables toward the model overall were analyzed by evaluating the mean decrease 
in accuracy with the removal of each variable. The predictor variable importance 
was also evaluated for each land-cover classification. Permutation results suggested 
that distance to shoreline, elevation, NDVI, and total vegetation returns were 
consistently the most important to overall accuracy in all permutations. This was 
statistically significant as represented in Figure 4.5. Comparison of the importance 
of the predictor variables for the highest and the lowest accuracy class reveals that 

TABLE 4.5
Land-Cover Classifications, Associated Areas, and Class Errors

Vegetation Type Area (acres [km2]) Class Error

Bottomland hardwood forest 38.1 (0.15) 0.66

Depressional swamp forest 2.1 (0.01) 0.52

Estuarine forest 1.19 (0.01) 0.97

Estuarine scrub/shrub 162.8 (0.66) 0.28

Headwater swamp 48.24 (0.20) 0.74

Riverine swamp forest 534.93 (2.16) 0.21

Salt-affected swamp forest 1.66 (0.01) 0.76

Salt/brackish marsh 21.85 (0.088) 0.33

Upland 527.38 (2.13) Not available
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the lowest accuracy class relied on distance to shoreline and elevation along with 
mean intensity for prediction accuracy. This differed significantly from the highest 
accuracy class, whose accuracy was determined most consistently by LiDAR-derived 
structural metrics. Figure 4.6 shows a map of the best model.

4.4  DISCUSSION

According to the random forest outputs, the forested wetland types and salt-affected 
swamp forests were the most difficult to classify. Variability in species composition 
and spatial distribution may have caused difficulties in the classification of wetland 
types. Such difficulty in mapping forested wetlands has been cited in other analyses 
in similar coastal areas within North Carolina (Allen et  al. 2013). When the 
classification was run on the six broader NWI wetland classifications present in 
the study area (e.g., estuarine shrub/scrub, palustrine forest wetland), accuracy 
of the most parsimonious model reached 82%. In the random forest classification 
of the NC DCM wetlands, the distance to shoreline and elevation variables were 
most important. This is understandable, since distance from the shoreline as well 
as elevation patterns are both important drivers of wetland extent and function. 
Although the LiDAR data were collected in January, during leaf-off conditions, to 
optimize the mapping of ground elevation, highly useful information on canopy 
structure can still be extracted from the nonground returns. Several studies have 
shown that leaf-off LiDAR data can be used to characterize vegetation canopy and 
structure (Sexton et al. 2009; Smart et al. 2012). Although the exact height of the 
canopy may be influenced by the season (due to leaf-on and leaf-off differences), 
the overall structure and variability remains identifiable even in leaf-off LiDAR 
data. Therefore, we concluded that the importance of the elevation and distance to 
shoreline variables were due to the inherently dynamic nature of wetlands that can 
appear both spectrally and structurally similar but may differ hydrologically and 
in their classification due to slight changes in elevation, inundation patterns, and 
distance to water.
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FIGURE 4.4  Variable importance for predictor variables used in the random forest 
classifications.
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FIGURE 4.5  Permutation importance of predictor variables after 100 permutations of the 
random forest fitted model. Aside from the mean decrease in Gini and overall accuracy, 
shown in the figure are predictor variable importance for one of the highest accuracy classes 
(riverine swamp forest) and one of the lowest accuracy classes (estuarine forest). Black color 
shows statistically significant across all permutations, whereas gray signifies nonsignificant 
impacts on overall accuracy.
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FIGURE 4.6  Costal wetland maps. (a) NC DCM—NWI wetland classification. Polygons 
from NC DCM wetland classification provided the target land cover for the random forest 
classification. (b) A map from the top-performing random forest classification model. White 
areas within the study area bounds represent areas of insufficient data for prediction. Note: 
Salt-affected swamp forests only appear in the random forest classification because this is 
not a land-cover class present in the NC DCM wetlands. Ancillary training data were made 
available and were used to supplement the NC DCM wetlands so that the algorithm could be 
used to explore the ability to identify salt-impacted wetlands.
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The random forest method was selected because it is a nonparametric technique 
that can handle both continuous and categorical independent variables. Random forest 
runs efficiently on large databases, can handle many input variables without variable 
deletion, and maintains high predictive power even when a significant proportion of 
the data is missing. It works well with large and noisy remote sensing data sets. It 
has also been shown to reduce overfitting and achieve higher accuracies compared 
to traditional classification trees (Breiman 2001). The training data are the key to the 
performance of the random forest method. In future analyses, the training data can 
be improved to include acquisitions of more recent field vegetation data. The data 
points used to train the model in this study were drawn from polygonal data sets 
with a relatively coarse minimum mapping unit. The inclusion of more accurate and 
thorough field-based analyses is considered a source of potential improvement, and 
may improve overall accuracies if the model were to be trained on a different data 
set. In addition, accuracy may be improved with an ensemble modeling approach. 
Potentially, a combination of LiDAR and another active remote sensing technology, 
SAR, could be included. This may improve the ability to differentiate the marshes that 
appear spectrally similar but differ in elevation (i.e., high and low marsh). Results from 
initial studies combining these active remote sensing technologies prove promising 
(Allen 2014; Allen et al. 2013).

It was expected that the addition of LiDAR-derived vegetation metrics would 
increase the accuracy of the classification significantly, but results suggested it 
increased the accuracy by 6%. LiDAR was able to distinguish between different 
wetland types that had characteristic patterns of vertical structure (i.e., differentiating 
between marsh, scrub/shrub, and forest), particularly in cases where the types might 
have appeared spectrally similar. However, there are also cases wherein wetland 
types (i.e., estuarine forest and riverine forest) appear both spectrally and structurally 
similar, and the main drivers of species differentiation are related to terrain factors 
(i.e., distance to shoreline and elevation). Despite the relatively small contribution of 
LiDAR in this particular study, because of the complexity and diversity of coastal 
wetland composition, a multidata source approach (one that combines terrain, 
spectral, and vertical measures) appears to be the most appropriate.

4.5  CONCLUSION

The ability to classify and discern wetland types is necessary in order to quantify 
changes in wetland ecosystems through time. The vegetation extent and habitat 
classification maps show the utility of combining LiDAR and spectral imagery in 
the mapping of coastal wetlands. Analyses of the classifications indicate that elevation 
(along with distance to shoreline) is by far the most important variable for mapping 
wetland extent and function. Vegetation metrics also contributed to the overall 
classification accuracy. Results of this research suggest that these remote sensing 
variables hold promise for assessing wetland composition and differentiating between 
wetland types. In coastal ecosystems, further analysis is needed to understand the 
relationships between wetland composition and saltwater intrusion. Future research 
will use multitemporal LiDAR data to detect changes in wetland ecosystems resulting 
from saltwater intrusion using spectral data sources and field data. Results from this 

(c) ketabton.com: The Digital Library



85LiDAR and Spectral Data Integration for Coastal Wetland Assessment

analysis would provide a better understanding of the complex interactions between 
wetland ecosystems and sea level rise induced saltwater intrusion.

4.5.1 O pportunities and Challenges

In order to exploit all the potential offered by the new generations of LiDAR and 
spectral sensors to map coastal wetlands, we must address several issues. The first 
issue is temporal disparity. It is a rare occurrence that all data used in an analysis 
are collected at the same time. Temporal resolution of a satellite sensor may vary 
from hours to days, whereas in the case of airborne sensors it may range from days 
to years, depending on mission planning. Landscapes are not static—they show high 
spatiotemporal variability due to processes such as forest growth and urbanization. This 
dynamic nature can lead to erroneous results from data registration and integration. 
Identification of such disparities and then detrending them (e.g., removing an aspect 
from the data that is causing some kind of distortion) will require research. The 
second issue is data registration. Registration of LiDAR and spectral images data with 
low possible errors is necessary to harness the full potential these data offer. Multiple 
approaches are available for data registration; however, new generations of sensors 
require the development of new registration algorithms to achieve accurate registration 
(Zhang and Lin 2017). The third issue is the limited availability of standardized 
data processing approaches. Despite promising prospects, the limited availability 
of multisensor data and the lack of standardized data processing algorithms hamper 
their widespread integration in analyses. For example, standardized processing and 
analysis approaches for multitemporal LiDAR and return intensity would help spur 
research (Eitel et al. 2016) and might improve data integration for Earth and ecological 
sciences. The fourth issue is the increasing need for high-performance computing. 
Fusion studies are typically limited to small spatial extents due to LiDAR’s high 
cost, small footprint, and large data volume. While cost will decrease, we expect 
increases in LiDAR data volumes with the expansion of the spectral and temporal 
dimensions of LiDAR data (Eitel et al. 2016). The increasingly high dimension of 
LiDAR and spectral data and the complexity of the processing algorithms require the 
design of adequate algorithms and architectures. The final issue is the development 
of appropriate and accurate mapping algorithms. Data fusion offers great potential to 
map and model environmental problems. This requires an improved understanding 
of the physics of LiDAR and spectral data in order to design optimal classification 
and mapping algorithms. With very high point spacing and resolutions, one needs an 
in-depth understanding of the involved physics of the sensors for accurate calibration 
and mapping of environmental conditions and processes.
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5.1  INTRODUCTION

Image matching is a key topic in photogrammetry and computer vision, with many 
applications in obtaining 3D surface information (e.g., Tsai, 1983). Given a set of 
images of the Earth’s surface, multiview image matching in photogrammetry is used 
to estimate the 3D shape of the corresponding surface. The representation of the 3D 
Earth’s surface, referred to as 3D modeling or 3D reconstruction in this chapter, 
describes the Earth’s surface in various formats, including the digital elevation 
model (DEM), the point cloud, and the triangular irregular network (TIN). Point 
clouds use a collection of 3D points to describe the Earth’s surface, whereas a TIN 
relies on a triangular network of vertices to express the surface. DEM is a raster file 
with elevation as the value of raster cells; thus, strictly speaking, DEM is merely 
a 2.5D representation of the Earth’s surface. For convenience and consistency, all 
of the above Earth surface representation methods will be referred to herein as 3D 
representation.

Image matching and 3D reconstruction is a challenging technique in 
photogrammetry because it is an inverse, ill-posed problem (Szeliski, 2010) from 2D 
images to a 3D surface. Classic stereo-image matching of two images to determine 
distance from a camera to an object was first discussed many decades ago (e.g., 
Gennory, 1980; Gruen, 1985; Marr & Poggio, 1979; Matthies et al., 1989). Multiview 
image matching (called multi-image matching in this chapter) is rooted in classic 
binocular stereo-image matching, but the matching employs more than two images. 
Multiple images generate redundant image information, which is expected to mitigate 
problems of classic stereo matching (Baltsavias et al., 2008), such as occlusions, 
distinct object discontinuities, and repetitive objects. In contrast, the redundant 
information also brings in challenges of integrating multiple images during the 
matching, and improving the matching efficiency for many images. Studies have 
demonstrated the qualitative and quantitative advantages of multi-image matching 
over a single stereo pair (e.g., Tack et al., 2012c).

Recently, enormous unmanned aerial vehicle (UAV) surveys (Ai et  al., 2015; 
Xu et  al., 2014; Zeng et  al., 2017a,b) and freely available multisource data from 
different levels of government and organizations (e.g., City of Surrey, 2014) provide 
an unprecedented chance for multi-image matching. With the improvement of 
computation capabilities, multi-image matching has rapidly developed over the last 
three decades and has evolved to be more powerful, coping with different matching 
primitives at different scales (e.g., Okutomi & Kanade, 1993; Paparoditis et al., 2000; 
Toldo et al., 2013; Tsai, 1983; Zhang, 2005). Multi-image matching, however, is still 
abstruse due to its sophisticated mathematics, the complicated matching techniques, 
and the technical terminology used. It is important to clarify and standardize 
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multi-image matching steps in photogrammetry and to analyze the performance of 
various methods. As a result, the objectives of this chapter are to:

	 1.	Review existing multi-image matching methods, summarize the core 
principles of multi-image matching, and propose a concise and fundamental 
framework to standardize and generalize multi-image matching in 
photogrammetry;

	 2.	Elaborate on advanced techniques that enhance the multi-image matching 
steps and enrich matching strategies, and discuss other peripheral factors 
that affect the performance of multiview image matching; and

	 3.	Discuss the limitations, challenges, and opportunities of current multi-image 
matching methods to explore the future directions of development.

This chapter is organized as follows: Section 5.2 introduces the fundamental 
framework of multiview image matching, from input images to output 3D representations; 
Section 5.3 introduces advanced techniques for multi-image matching to improve the 
matching accuracy and accelerate the computation speed; Section 5.4 summarizes the 
existing multi-image matching algorithms, analyzing their strengths and limitations; 
and Section 5.5 further discusses recent developments in multiview image matching and 
points out the possible trends in photogrammetric multiview image matching. Section 
5.6 concludes this review and highlights the contribution of this work.

5.2 � FUNDAMENTAL FRAMEWORK OF MULTI-IMAGE 
MATCHING AND 3D RECONSTRUCTION

With multiple images as input, the reconstruction of the 3D Earth’s surface is a 
complicated process and requires a series of steps (Zeng et al., 2013). Before multi-
images can be matched, preprocessing is usually required, such as radiometric 
correction and image enhancement, image orientation and bundle adjustment, and 
matching primitive (i.e., points, edges, and break lines) extraction (e.g., Sedaghat 
et  al., 2012; Zhang & Gruen, 2006). Then image matching is used to find the 
corresponding matching primitives in multi-images. The relative position changes of 
corresponding matching primitives in images, referred to as parallax (Lillesand et al., 
2008) or disparity (Szeliski, 2010), are proportional to the camera-to-ground distance 
(image depth). When camera position is known, the ground elevation of the matching 
primitive is also determined since image depth is determined. After image matching, 
further postprocessing generally includes point cloud to regular grid interpolation, 
elevation filtering and noise removal, geocoding output 3D models, and mosaic 3D 
models, among others.

5.2.1 I mage Orientation

Image matching involves two separate coordinates. The 2D coordinates measuring the 
position of a pixel in the images are the image space, whereas the coordinate system 
of the 3D Earth’s surface is the object space (Lillesand et al., 2008). Sometimes, 
image space is extended to an auxiliary 3D space by adding a dimension along the 
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optical axis, as in Figure 5.1a. Before multi-images can be matched, a functional 
relationship (Tao & Hu, 2001) between the image space and the object space must 
be established. This process is referred to as image orientation. In photogrammetry, 
such image-to-ground connection can be expressed using a rigorous physical sensor 
model or an empirical sensor model, such as the rational function model (RFM) (Di 
et al., 2003; Grodecki & Dial, 2003; Tao & Hu, 2001). Different types of rigorous and 
empirical sensor models and their performances are discussed in Habib et al. (2007).

Based on the collinearity equations in the rigorous physical sensor model, the 
transformation between a point in image space p(x, y) and the ground point in object 
space P(X, Y, Z) can be built, as illustrated in Figure 5.1a and described as follows 
(Di et al., 2003; Lillesand et al., 2008):
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FIGURE 5.1  Two sensor model types to connect the image space and the object space. In 
(a), points in the image space are connected to the object space based on projective geometry. 
In (b), evenly distributed points in the image are mapped to a 3D grid with many elevation 
layers (h1, h2, h, …, hn) in the object space then RFM coefficients are computed based on 
these points’ connection from image space to object space. (From Tao, C. V., & Hu, Y. 2001. 
Photogrammetric Engineering and Remote Sensing, 67(12), 1347–1357.)
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where S(Xs, Ys, Zs) is the perspective center described in object space, f is the 
camera constant, pp (x0, y0, −f) is the principal point in image space, and aij are the 
elements of the rotation matrix with the three angles (ω, ϕ, κ) (Moffitt & Mikhail, 
1980). In contrast, empirical sensor models use an approximate scene-to-ground 
mathematical relationship without a rigorous function. RFMs (Grodecki, 2001) are 
well-known empirical models due to their popularity in commercial high-resolution 
optical satellite images. RFM uses a ratio of two polynomials to build the connection 
between image space and object space, as illustrated in Figure 5.1b. RFMs are fitted 
with the assistance of the rigorous sensor model. An RFM is described as follows (Di 
et al., 2003; Grodecki, 2001):
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where (x, y) are normalized pixel coordinates in image space (offset and scaled to 
[−1, +1]), and (X, Y, Z) are normalized coordinates in ground space. The polynomials 
Pl (l = 1,2, …, 8) have the form in Equation 5.7. Usually, the powers of object-
space coordinates are constrained by 0 ≤ m1 ≤ 3, 0 ≤ m2 ≤ 3, 0 ≤ m3 ≤ 3, and 
m1 + m2 + m3 ≤ 3. Each P(X,Y,Z) or P(x,y,Z) is a third-order, 20-term polynomial.

The rigorous physical sensor model is mainly applied to frame and linear array 
cameras, whereas the RFMs are more generalized and can be used in many other 
sensor types, such as scanned line sensors. The rigorous model generally provides a 
more accurate result than that of the RFM, whereas the RFM is easier to implement 
and less computationally intensive than the rigorous model. The impacts of different 
sensor types on multi-image matching will be further discussed. Ground control 
points (GCPs) are widely used to improve the sensor model accuracy (e.g., Tack et al., 
2012a; Tao & Hu, 2001; Toutin et al., 2012).

5.2.2 C andidate Search

After establishing the connection between each image and the ground, multi-image 
matching is used to search for the most consistent primitives that produce the highest 
consistency among all images under the image-ground geometry. There are two types 
of multi-image matching, based on the geometry in which the depth is searched: (a) 
image-space matching and (b) object-space matching. The image-space matching 
methods use the built image orientation to search for corresponding primitives among 
images at different viewpoints (e.g., Baltsavias, 1991; Gruen & Baltsavias, 1988; 
Toldo et al., 2013; Zhang, 2005). In contrast, the object-space matching methods 
iterate each cell in the object space and assess the mutual agreement between their 

(c) ketabton.com: The Digital Library



94 High Spatial Resolution Remote Sensing

projections on images (e.g., Noh et al., 2012; Paparoditis et al., 2000) to estimate the 
optimal elevation.

As illustrated in Figure 5.2, n images of a ground scene from multiple orbits can be 
matched in two ways. Image-space matching predefines a reference image Ir, with its 
imaging perspective center Or, and a ground point P(X, Y, Z) that projects in the Ir at 
point pr that also needs to be matched. P is searched along the reference ray O pr r

� ����
 at a 

search range ΔZ1. Line segments lI1, …, lIn. in the n images are the trajectory of possible 
P projections in search range ΔZ1. The downward sensor model of Ir is used to estimate 
the initial position of P based on pr and the searching Z, according to Equations 5.3, 5.4, 
and 5.6. Based on the initial position of P, the corresponding point in each image (except 
the reference image) is determined by the upward sensor model of that image, according 
to Equations 5.1, 5.2, and 5.5. Specifically, for the point pr(xr, yr) about to be matched, 
the corresponding point of pr in another image i is the function of ground elevation Z:
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where n is the number of image views, and r is the reference image. The optimal position 
of P reflects the highest consistency (similarity measure) among corresponding points 
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FIGURE 5.2  Core principles of the two types of multi-image matching, modified. Image-
space matching searches for and matches corresponding primitives in images, whereas object-
space matching estimates the elevation of each object-space cell by matching its projections in 
images. (From Paparoditis, N., Thom, C., & Jibrini, H. 2000. Surface reconstruction in urban 
areas from multiple views with aerial digital frame cameras. Paper presented at the ISPRS 
Congress Amsterdam, Amsterdam, Netherlands.)
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of P in images. A similarity measure is defined among all the image corresponding 
points to search for the optimal elevation Z*:

	
Z f p p Z

Z
s r i

Z∗ = ∈arg Zmax ({ , ),} ∆ 1	 (5.9)

where fs is the similarity function later defined in Equation 5.12, and the optimal Z* 
is the Z that maximizes the similarity measure (or minimizes the distance measure).

In contrast, object-space matching iterates all grid cells within the ground 
boundary and estimates the optimal elevation for each grid cell. In most cases, ground 
is implicitly defined as a regular mesh with certain columns and rows, known as grid 
cells (Szeliski, 2010). Specifically, for each grid cell, horizontal coordinates X0 and 
Y0 are predefined, while an optimal Z* is searched for in a search range ΔZ2. The 
upward sensor model is applied to each of the n images. Similarly to the image-space 
matching case, each Z corresponds to a point in each of the n images
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Thus, an optimal Z* for that grid cell is searched for in a given Z range ΔZ2, as 
illustrated in Figure 5.2 and defined as

	
Z f p Z

Z
s i

Z∗ = ∈arg max ({ }), Z ∆ 2	
(5.11)

In image-space matching, X, Y, and Z coordinates are dependent. Specifically, a 
certain Z determines the X and Y using the downward sensor model, according to 
Equations 5.3, 5.4, and 5.6. Object-space coordinates merely work as intermediate 
parameters to bridge image-space coordinates from the reference image to the search 
images. The trajectory of the corresponding point in a search image according to the 
changing Z is the line lIi, called the epipolar line. In contrast, object-space matching 
iterates through known (X, Y) cells and is driven by the unknown Z. In object-space 
matching, there is no reference image; thus, all images are equally important.

5.2.3 S imilarity Measures

Because matching candidates among multi-images are connected based on ground-
image geometry, a similarity measure is a value or score to indicate the consistency 
of matching candidates among multi-images. Specifically, the similarity measure fs 
in Equations 5.9 and 5.11 can be further expanded as

	 f p f V V V V m ns i s p p p pm({ }) ( , , , , ),= … ≤
� � � �

1 2 3 	 (5.12)

where pi is one of the corresponding points, m is the number of neighboring images 
sharing a view of the matching point, and 

�
V  is a feature vector (Zeng et al., 2014) 
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to express a measurable variant for point pi. For instance, 
�
V  can be a 2D matching 

window centered at point pi, or it can be a 1D epipolar line segment crossing pi. The 
similarity measure f p ps r i({ }),  in Equation 5.9 is a special case of Equation 5.11, with 
one fixed (reference) image.

Regarding the definition of fs, photo consistency is the essential and most popular 
similarity measure in optical image matching. There are many similarity measures 
listed in Table 5.1, such as pixel-based window matching and sum of squared 
differences, normalized cross-correlation (NCC) (Hannah, 1974), gradient-based 
measures (Scharstein, 1994), image variance and entropy (Zitnick et al., 2004), and 
hierarchical mutual information (Hirschmuller, 2008). According to Hirschmuller & 
Scharstein (2009), similarity measures (or cost or distance measures in the opposite 
manner) roughly fall into three categories: (a) parametric measures based on the 
magnitude of image intensities, (b) nonparametric measures based on the local order 
of image intensities, and (c) mutual information measures based on relationships 
between images. Detailed summaries of similarity measures are given in Brown et al. 
(2003) and Hirschmuller & Scharstein (2009).

Similarity measures used in classic binocular stereo-image matching are designed 
to compare two primitives (e.g., pixels, vectors, or image blocks). In Equation 5.12, 
multi-image similarity measure f ps i({ }) involves more than two vectors; thus, 
strategies are required to integrate similarity scores from many neighboring image 
pairs into a single similarity score. For instance, the most naïve strategy is choosing 
the highest similarity score (e.g., Moravec, 1979) from all two-image similarities, 
where a higher matching rate is assumed to be more reliable. Different strategies 
have been developed to integrate a two-vector fs into a multivector fs, as required in 
Equation 5.12 and listed in Table 5.2.

TABLE 5.1
Popular fs for Two Image Blocks, Extracted and Improved

Similarity 
Measure Types Measure Names Characteristics

Parametric Sum of the squared/absolute 
differences (SSD/SAD)

Assumes brightness constancy among images, 
sensitive to outliers

NCC Invariant to changes in image gain and bias, 
blur depth discontinuities

Nonparametric Rank Invariant under all radiometric changes that 
preserve the order of pixel intensityCensus

Ordinal

Mutual 
information (MI)

Joint moment method (JMM) 
(Tsai, 1983)

Less sensitive to noise and specularity changes 
than correlation method

Hierarchical MI (HMI) 
(Furukawa & Hernández, 2015)

Highly invariant to transformation that does not 
change the amount of information in images

Source:	 Hirschmuller, H., & Scharstein, D. 2009. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 31(9), 1582–1599. doi:10.1109/TPAMI.2008.221.

(c) ketabton.com: The Digital Library



97Multiview Image Matching for 3D Earth Surface Reconstruction

Using the maximum of two-image similarity values to represent multi-image 
similarity is a straightforward method proven to be effective (Hernández & Schmitt, 
2004), but a correct maximum similarity relies on a unique scene inside the matching 
window, which requires a large support window. The strategy of using the mean 
or sum of the two-image similarity values is reported to perform well in repetitive 
texture areas (Zhang & Gruen, 2006). These simple statistic methods, however, are all 
affected by similarity value outliers, such as similarity values at occlusion or specular 
reflectance surfaces. Weighted mean was designed to suppress such outlier noises by 
allocating weights based on local maxima (Vogiatzis et al., 2005). To completely get 
rid of the effect of server occlusions and failure matching values, global optimization 
considers the neighboring consistency to assign correct similarity values.

5.2.4  3D Reconstruction

The optimal elevation is Z* in either image-space or object-space matching, according 
to Equations 5.9 and 5.11. The candidate elevation Z is increased from min Z to max Z 
using a constant increment, with a corresponding pi

Z at each Z. A similarity measure 
profile between min Z and max Z, as illustrated in Figure 5.2, is used to decide the 
optimal elevation Z*.

In an ideal case, the similarity profile shows a unimodal shape, with a clear and 
sharp maximum similarity value to solve Equation 5.9 or 5.11. In some cases, however, 
there is more than one peak for the similarity profile, and advanced strategies have 
been developed in the literature. In Zhang & Gruen (2006), two criteria were used 
to decide whether it is a successful match: a dominant peak with the local maxima 
a certain percentage greater than the rest of the peaks, and consistency between 
forward and inverse matching when different images are used as reference images. 
Failure to meet either of these criteria leads to multiple match candidates for a single 
point, or even an unsuccessful match and abandoned points. Multiple candidates for 
a single point can be globally optimized using the probability relaxation technique 

TABLE 5.2
Strategies for Converting Multiple Similarity Values to a Single Similarity Value

Strategies Expression Examples

Maximum f V V V V f V Vs p p p p
i j

s p pm i j( ), , , , max ( , ),
,

� � � � � �
1 2 3 … =  

i j m i j, , , , , ,= … ≠1 2 3

Winner takes all (Hernández & 
Schmitt, 2004)

Mean or sum f V V V V
N

f V Vs p p p p
i j

s p pm i j( , , , , ) ( , )
,

� � � � � �
1 2 3

1
… = sum , 

N is the number of image pairs

Sum of normalized cross-
correlation (SNCC) (Zhang & 
Gruen, 2006)

Weighted mean f V V V V
N

W f V Vs p p p p
i j

ij s p pm i j( , , , , ) ( , ),
,

� � � � � �
1 2 3

1
… = ⋅sum  

Wij  is the adjusting weight that favors local 
maxima

Robust voting (Vogiatzis et al., 
2005)

Global 
optimization

fs is determined by a combination of pixel 
similarity and neighboring smoothness 
globally; see Section 5.3.4 for details

Markov random field (Campbell 
et al., 2008)
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(Christmas et al., 1995) or Markov random field (MRF) (Toldo et al., 2013). In Noh 
et al. (2012), the absolute peak value threshold and the threshold between the largest 
and second largest peaks were used to search for a successful match.

There are many data formats for representing the 3D Earth’s surface, such as the 
digital surface model (DSM), the TIN, and 3D point clouds. In object-space matching, 
each grid cell with a known X and Y and an optimal Z* after multi-image matching 
generates a 2.5D DSM; the iteration over all grid cells within the image boundary 
generates elevations as attributes for each grid. In the image-space matching case, a 
pixel or feature point in the reference image creates an accurate ground point after 
matching; iteration over all image pixels or detected feature points creates point clouds 
inside the image boundary. Point clouds can be further processed to produce a TIN or 
DSM. A TIN is usually generated after matching different primitives, such as points 
and edges (Wu et al., 2012). There are also other ground definition methods in multi-
image matching, such as the inclined planar surface patch (Jiang, 2004) as well as the 
voxel in a space-sweep method (Collins, 1996) and a volume graphic cut matching 
method (Vogiatzis et al., 2005). Currently, DSM is still the most popular 3D Earth 
surface representation for satellites and aerial images acquired via narrow baseline.

Different output formats have different characteristics (Table 5.3); thus, each 
is suitable for different applications. From the perspective of data rendering, TIN 
can render a flat terrain efficiently with a relatively smaller file size, whereas point 
clouds and DSMs suffer from large-scale terrain rendering with larger file sizes. 
Moreover, terrain rendered by point clouds usually has pits and spikes. From the 
perspective of data manipulation, 3D point clouds can be easily split or merged, 
whereas within a similar TIN manipulation there is usually a topology consistency 
issue, and thus manifoldness (Furukawa & Hernández, 2015). From the perspective 
of data compatibility, DSMs representing elevation on regular grids can easily be 
integrated with other raster layers (e.g., land use or land cover) for analysis.

5.3 � ADVANCED TECHNIQUES TO REFINE AND 
ACCELERATE MULTI-IMAGE MATCHING

In Section 5.2, the core framework of multi-image matching was introduced, but an 
effective and efficient multi-image matching method to process large-scale geographic 
images requires many advanced techniques. Based on the core framework, this 

TABLE 5.3
Comparison of 3D Reconstruction Representation Formats

Output 
Format

Data 
Size

Rendering 
Speed/
Quality

Data 
Manipulation

Data 
Compatibility

DSM Medium Medium/fair Normal Good

Point clouds Large Slow/poor Easy Poor

TIN Small Quick/good Difficult Fair
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section further elaborates on strategies to convert a theoretic multi-image matching 
framework into realistic and stable algorithms.

5.3.1  Visibility Determination and Occlusions

In Equation 5.12, the similarity is calculated among m images that share a view of the 
ground point in the n total images. Triple-view satellite images (e.g., Zhang & Gruen, 
2006) used in multi-image matching methods usually assume that m equals n because 
satellite images are taken under narrow baseline and the ground scene extent in each 
image is approximately the same. In recent low-altitude UAV imagery matching (e.g., 
Ai et al., 2015; Tong et al., 2015), however, such an assumption is not satisfied because a 
ground point may merely be visible in a small set of images where m is smaller than n. 
Therefore, it is critical to search for appropriate sets of images that share the approximate 
ground extent; then, each set of images are separately matched and merged.

For multi-images acquired with accurate locations and camera parameters, images 
can be triangulated and bundle adjusted (Szeliski, 2010), and then visibility can be 
estimated based on the images-to-ground geometry. For images taken with inaccurate 
locations [i.e., low-accuracy global positioning system (GPS)] or unordered images 
without locations, structure from motion (SfM) (Szeliski, 2010) methods are used to 
simultaneously recover image orientation, and thus estimate the visibility of ground 
points. Meanwhile, SfM can coarsely match feature points in the multi-images, thus 
generating sparse 3D point clouds, which serve as preliminary input for further dense 
matching that generates a 3D model for the entire scene. Readers are referred to 
Furukawa & Hernández (2015) for more detailed algorithms about visibility search.

Some ground objects may not be visible in several or all of the multi-images, which 
leads to the occlusion issue. In Brown et al. (2003), three types of occlusion processing 
methods are discussed: methods that detect occlusion, methods that reduce sensitivity 
to occlusion, and methods that model the occlusion geometry. Occlusion can be detected 
via discontinuities in the depth map, inconsistent forward and inverse matching 
between images, and opposite order with adjacent matches, among other methods. 
Occlusions can also be lessened by modifying the similarity measure computation. 
For instance, the similarity measure can be adjusted to tolerate occlusion, or the search 
window can be resized, reshaped, or diffused to obtain the best match and minimize 
the effects of occlusions. Furthermore, occlusions can be modeled and included in the 
matching procedure, usually with dynamic programming. All occlusion mitigation 
techniques in the recent literature fall into these three categories. For example, in 
Hirschmuller (2008), occlusions are first detected by a left/right matching consistency 
check, and then assigned as the second lowest background value. In Noh et al. (2012), 
the occluded matching pairs do not contribute to the SNCC, and the occluded part of 
an epipolar line search window is detected and discarded in the similarity measure.

5.3.2 M atching Primitives

Matching primitives are the basic units for image matching. Common matching 
primitives include grid cells, point, and edge in the image space (e.g., Matthies et al., 
1989), or grid cells, mesh, patch, and voxel in the object space (e.g., Baltsavias, 1991; 
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Collins, 1996). Different matching primitives have complementary abilities to match 
images with various image intensities, textures, and terrains. Recent developments in 
stereo-image matching (Aguilar et al., 2014; Noh et al., 2012; Stentoumis et al., 2014; 
Wu et al., 2012) mainly focus on the combination of different matching primitives 
for more effective and stable methods. This chapter discusses some of the critical 
matching primitives in multi-image matching, while more details about stereo 
matching primitives can be found in Gruen (2012).

5.3.2.1  Grid Cells
Using grid cells as matching primitives guarantees that image matching is conducted 
uniformly for the entire image. In Figure 5.2, object-space matching uses object-space 
grids as matching units, whereas image-space matching is driven by points in the 
reference image; such points can be pixels evenly distributed over the entire reference 
image. The advantage of the grid cell in image matching is to generate point clouds 
covering the entire image boundary, including problematic matching areas (i.e., low-
texture areas), and to facilitate global optimization and hierarchical matching strategies. 
Conversely, the disadvantage of grid cell matching is a possible low matching coefficient, 
which can cause multiple corresponding candidates for one grid cell or matching failures.

5.3.2.2  Feature Points
Feature points that are detected according to image intensity gradients are not required 
to be evenly distributed, in contrast to grid cells. Feature points are also usually not 
in the center of a pixel. There are many feature point detection algorithms, such 
as the Förstner operator (Förstner, 1986), the Harris operator (Harris & Stephens, 
1988), the SIFT operator (Lowe, 2004), and the DAISY descriptor (Tola et al., 2010). 
Different feature point detection methods have different characteristics; thus, they 
are selected by different matching methods for different purposes. For instance, a 
modified Förstner operator may be employed for feature point detection (Zhang, 
2005) due to its reduced computational cost and easy threshold determination. The 
Harris operator may be chosen (Sedaghat et al., 2012) because of its repeatability rate 
and information content compared with other operators.

The advantage of feature points for image matching is the accuracy and reliability 
during matching, since feature points are usually located in texture-rich areas. 
Feature points have a higher possibility of successful matching, compared with grid 
cell points. The disadvantage of feature points is their imbalanced distribution, which 
may cause large areas without matched points.

5.3.2.3  Edges
Compared with grid cells and feature points, edge and line matching is more 
complicated. An edge often has no constant elevation, thus the matching of edges is 
eventually broken into matching of a point series that describes the edge (i.e., end 
point and midpoint). The corresponding edges in multi-images may look different 
due to perspective projection distortion, or broken edges because of occlusion, 
shadow, noises, or edge detection method deficiencies (Zhang, 2005). There are many 
edge detection methods, such as the Canny (Canny, 1986) and EDSION (Meer & 
Georgescu, 2001) operators.
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Edge matching is an extension of point matching, with different strategies to 
define edge similarity measures. For example, in Schmid & Zisserman (2000), the 
mean of the NCCs for all the discrete pixels on the edges are calculated. In Zhang 
(2005), with a search window divided into two (left and right) parts, the consistency 
of these two parts’ intensity and the contrast between multi-images are the criteria 
for edge matching. In Wu et al. (2012), a shiftable self-adaptive line cross-correlation 
(SSLCC) method first identified the optimal matching location in a search window, 
using a shiftable (moving) window, and then expanded the window size at the optimal 
location until it reached the maximum matching correlation.

The advantage of edge matching is to preserve elevation discontinuity along 
ground objects. It has also been demonstrated to be valuable for matching images 
with poor texture (Wu et al., 2012). The disadvantage is the difficulty of matching 
corresponding edges in different formats among multi-images, such as broken edges 
or projective distorted edges. Moreover, it is challenging to effectively integrate the 
matching results of edges and other point primitives into a final ground elevation 
product.

5.3.2.4  Patches
From the perspective of human interpretation, scenes (images) are decomposed into a 
series of objects. Objects can be further separated into small rectangular patches covering 
the surfaces. A patch is a 3D rectangle with its center and normal plane (Furukawa & 
Ponce, 2010), which is an extension of point primitives. To match patches, points evenly 
distributed on a patch are projected onto each image and then sampled on each image 
(Furukawa & Ponce, 2010). Similarity measures are constructed based on the group of 
projected points among images, similar to a 2D extension of edge matching.

Patch matching methods estimate the ground 3D surface and aspect simultaneously. 
Patch matching is closer to human interpretation in comparison with point primitives 
and is reported to better tolerate outliers or obstacles and rely less on topology 
assumptions and initialization (Furukawa & Ponce, 2010). A popular patch-based 
method, Patch-based Multi-View Stereo (PMVS) (Furukawa, 2014), is used in many 
studies.

5.3.3  Parameter Adjustment

During multi-image matching, there are many parameters that must be adaptively 
selected in order to make the matching effective, efficient, and robust. These include 
the reference image, the search range, the search window size, and the threshold of 
successful matching. Discussion of other relevant but optional parameters in stereo-
pair image matching can be found in Zhang & Miller (1997).

5.3.3.1  Reference Image
In image-space matching, a reference image is selected before image matching is 
initiated. In most cases (e.g., Zhang, 2005), the nadir-view or near-nadir-view image 
is selected as a reference due to fewer occlusions. In object-space matching, although 
no reference image is nominated, a reference image is required for some similarity 
measures (i.e., SNCC), defined in Equation 5.6. In Noh et al. (2012), the reference 
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image changed at each ground cell: for a given grid cell, its reference image is chosen 
as the one that has the shortest distance between the grid cell and the image nadir 
position.

5.3.3.2  Search Range
Figure 5.2 and Equations 5.4 and 5.6 mentioned the search range ΔZ, from min Z 
to max Z, during the matching. The selection of an appropriate search range faces 
a dilemma between accuracy and efficiency: a short search range may fail in high 
terrain variation (i.e., tall building roofs or deep valleys), whereas a large search 
range increases the computational complexity and the chance of erroneous matching. 
In Paparoditis et al. (2000) and Zhang (2005), search ranges depend on a priori 
knowledge of the scene. In Jiang (2004) and Noh et al. (2012), the search range was 
adaptively determined by a TIN. The minimum and maximum elevations of all the 
matched points that comprise a point’s neighboring triangular patches are employed 
to determine the search range of that point. Such a search range directly based on a 
point’s neighbored TIN vertices, however, is incorrect if the current working point is 
a local maximum or minimum.

5.3.3.3  Search Window Size
A search window is used as the working zone to define similarity between multi-
images in local-based matching methods. On one hand, the search window size 
should be large enough to carry sufficient intensity variation for reliable matching; 
on the other hand, an excessively large search window increases the computation 
time and projection distortion. In Kanade & Okutomi (1994), a window was selected 
adaptively by evaluating the local variations of the intensity and the disparity. Some 
studies select a fixed window size according to their study site after experiments 
(Paparoditis et  al., 2000; Tack et  al., 2012b; Takeuchi, 2005). In Zhang (2005), 
the search window size was experimentally set based on the change of the SNCC 
peak. In Gwinner et al. (2009), the size of the search window was adjusted by an 
epipolar constraint. Finally, in Zhu et al. (2015), the support window was based on 
an approximate 3D support plane, described by a depth and two per-pixel depth 
offsets. More discussion about various window size selection strategies can be found 
in Zhu et  al. (2015). The search window should be adaptive at different terrain 
types: specifically, window size increases in flat terrain since the ground texture is 
dull, while window size decreases in rough and texture-rich areas to avoid terrain 
discontinuity and projection distortion (Tack et al., 2012c). In contrast, a matching 
result is necessary to evaluate how flat the terrain is in order to choose the window 
size to perform the matching. The relation between window size and terrain type is 
a chicken and egg problem.

5.3.3.4  Threshold of Successful Matching Similarity
Multiview images of the same ground scene are not identical due to projective 
distortion, terrain relief, and image noise; thus, a perfect similarity cannot be 
achieved even in the case of successful matching. A threshold that distinguishes 
successful and failed matches is essential. In Paparoditis et al. (2000), the authors 
claimed the difficulty of defining a reliability criterion and a satisfying rejection 
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threshold automatically; thus, a threshold of correlation scores was manually set. In 
Zhang (2005), a minimum acceptance threshold was set for SNCC values. In Noh 
et al. (2012), a combination of thresholds of the highest peak and the contrast between 
the highest and the second highest peak were set at the same time. In Gwinner et al. 
(2009), the distribution of the correlation coefficients for all of the matched interest 
points was employed to determine the cross-correlation coefficient threshold.

5.3.4 G lobal Optimization

In the core principles of multi-image matching, only single primitive matching 
and window-based similarity computation are discussed. The global connection 
between points, such as the spatial consistency, is important to refine the matching 
result. Imposing global consistency disambiguates multiple candidates and avoids 
mismatches caused by repetitive texture structures and surface discontinuities (Zhang 
& Gruen, 2006).

5.3.4.1  Multicandidate Optimization
If the similarity profile (illustrated in Figure 5.2) for a matching point has no clear 
and sharp peak, multicandidates are assigned to the point. In order to remove 
ambiguities in a global context, two popular optimization methods are proposed in 
the literature: the probability relaxation technique (Christmas et al., 1995; Zhang & 
Gruen, 2006; Zitnick & Webb, 1996) and MRF optimization (Campbell et al., 2008; 
Toldo et al., 2013). In probability relaxation, a smoothness constraint is employed 
to iteratively search for correct candidates. The smoothness constraint assumes that 
the neighboring point has similar terrain heights, except when there are matched 
edges between them. Given two neighboring points (i and h) in image space and 
their corresponding matching candidates ( j and k) in object space, their compatible 
coefficient C is defined as follows (Zhang & Gruen, 2006):
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where dih is the distance between two points i and h in image space, ΔZ jk  is the 
elevation difference for points k and j in object space, β is the scaling coefficient that 
is empirically set to a constant, and T is the weighting factor to control the continuity 
of the terrain surface. Specifically, when there is a matched edge between points i 
and h, then T will be set as a very small value; otherwise, T is set as 1. According to 
Equation 5.13, a small distance in image space (dih) or object space (ΔZ jk) leads to 
a large compatibility coefficient, and thus a high possibility of supporting the two 
points as a pair of successful matches. In MRF optimization, a discrete label MRF 
optimization assigns a label k K Ui ∈ …{ , , , }1  to each point pi, with 1 to K as the multiple 
matching candidates of the point; U is the failed matching status, which means none 
of the matching candidates are correct. The cost function to be minimized consists 
of two parts: the smoothness term and the data term. The cost of a labelling k ={ }ki  
is defined as (Campbell et al., 2008)
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where (i, j) denote neighboring pixels in image space, ρi is the peak value of NCC 
scores, Z is the ground elevation in object space, λ is the weight of the data term, and 
β and C are constant values. A large peak value (ρi) or small elevation difference 
between neighbors (i, j) leads to a lower overall energy cost E( )k , similarly to the 
probability relaxation method. The data term and smoothness term can be variants 
(Toldo et al., 2013), as soon as they define an effectively convergent minimization 
issue for the candidate disambiguation.

5.3.4.2  Least-Square Matching Refinement
The goal of least-square matching (LSM) is to solve a group of nonlinear observation 
equations that share some common unknown parameters, to minimize the sum of 
the squared differences, and to give optimized common parameters. The least-square 
matching of stereo images can be applied to multi-image matching (Baltsavias, 1991) 
or multipoint surface reconstruction (Wrobel, 1991) in object space. A general least-
squares observation equation is given as (Baltsavias, 1991; Zhang, 2005)

	 I x y e x y I T x yi i g0( , ) ( , ) ( ( , ))− = 	 (5.17)

where I0 is the intensity of a point required to be matched in the reference image, 
ei is the true error function, i is the index of the matching image, and T x yg( ),  is 
the geometric transformation between images, such as the f f x yupward downward( ),  in 
Equation 5.3 or a simple affine transformation. Two types of observation equations 
are established: radiometric constraints (i.e., the intensity consistence between 
images) and geometric constraints (i.e., collinearity conditions).

The LSM refinement improves the matching accuracy by further exploiting prior 
information and constraints; LSM claims to offer subpixel matching accuracy (Gruen 
& Baltsavias, 1986). However, LSM is a highly nonlinear process and therefore 
requires very good approximate values (Gruen, 2012); thus, primitive matching in 
image space or object space are prerequisites as input for LSM.

5.3.4.3  Energy Minimization
Many global methods (especially in the computer vision community) are formulated in 
an energy minimization framework to refine the matching result. An energy function 
for image matching usually includes two terms: the data term, which describes the 
successfulness of similarity for each point, and the smoothness term, which encodes 
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the smoothness assumptions and neighboring constraints. The objective of such an 
energy function is to find a solution for Z (surface elevations) that minimizes a global 
energy function (Pierrot-Deseilligny & Paparoditis, 2006)

	
E Z A X Y Z w F G Z( ) ( , , ) ( ( )),= +∑ ⋅

�

	
(5.18)

	 , ( , , ) , ,e.g. SNCC( )A X Y Z X Y Z= −1 	 (5.19)

where Z is the unknown to be optimized and A is the data term to measure the 
similarity among projections of point (X, Y, Z). An example data term is given in 
Equation 5.19. The smoothness term is F G Z( ( ))

�
 depending on the variations of Z, 

such as the 8-neighborhood elevation difference, and w is the weight to balance the 
data term and the smoothness term.

Different strategies have been developed to solve such a local minimum problem 
based on regularization and Markov random fields, including continuation, 
simulated annealing, highest confidence first, and mean field annealing methods 
(Szeliski, 2010). More efficient methods, such as maximum flow and graph cut (e.g., 
Ishikawa, 2003; Roy & Cox, 1998) have been recently developed. In some sense, 
the MRF optimization in Equation 5.14 is also an energy minimization function, 
although the target of Equation 5.14 is to remove ambiguity in multicandidates of 
points.

5.3.5 M ultiscale Matching Strategies

Multiscale image matching, also referred to as hierarchical image matching, 
multiresolution matching, or matching through image pyramid, is an important 
strategy for robust, accurate, and efficient image matching. The matching results at 
a coarser scale are less sensitive to error sources, such as occlusions, shadows, and 
projective distortion. Thus, the propagation of disparity (or elevation), from the coarse 
image level to the fine image level, can improve the matching accuracy and decrease 
the computational cost. Image pyramid construction specifically for image matching 
was elaborated upon in Baltsavias (1991).

Multiscale image matching involves a few steps. First, based on the original 
images, an image pyramid is created over n levels, and given a certain scale factor 
(kernel size) and a downsampling method. The downsampling method is varied in 
literature; examples include adaptive smoothing (Chen & Medioni, 1990), mean value 
(Jiang, 2004), wavelet transform (Yuan & Ming, 2009), and Gaussian filter (Noh et al., 
2012). Second, starting from the top level (nth level), images are matched at each 
intermediate level and the matching result is inherited as a priori knowledge in the 
next intermediate level. For example, a TIN constructed after matching in this level 
can be utilized to determine minimum and maximum search elevations in the next 
level (Jiang, 2004; Noh et al., 2012; Wu et al., 2012). Finally, the matching process 
reaches the original image level (0th level) and generates the output. Multiscale 
strategy is critical for multi-image matching because the computing time soars when 
many images are involved in the matching.
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5.4  SOFTWARE, ACCURACY, AND EFFICIENCY

5.4.1  Available Multi-Image Matching Software

There are many open source or commercial multi-image matching software packages 
available for 3D modeling of the Earth’s surface:

•	 Clustering Views for Multi-view Stereo (CMVS) (Furukawa, 2014), or the 
previous PMVS, which follows a multistep approach that does not need 
any initial approximation of the surface: Although mainly designed for 
multiview images captured by consumer cameras rather than remote sensors, 
CMVS is an open source matching approach that matches multi-images 
simultaneously rather than matching images pair by pair. There are other 
packages that can take the CMVS output and produce georeferenced point 
clouds, such as the SfM_georef (James & Robson, 2012). There are also 
multiple ongoing efforts to piece together existing tools for a streamlined 
multi-image preprocessing, matching, and product generation, such as the 
OpenDroneMap (GitHub, 2015).

•	 Ames Stereo Pipeline (ASP) (Broxton & Edwards, 2008; NASA, 2014; 
NeoGeographyToolkit, 2014): ASP is a free, open source suite of automated 
geodesy and stereogrammetry tools designed to process planetary imagery. 
It models the entire image formation process and finds the optimal height 
for each DEM post, given every available orbital image. A recent alternative, 
Satellite Stereo Pipeline (s2p), was developed to refine the performance on 
large pushbroom images (de Franchis et al., 2014).

•	 MicMac (IGN, 2014): MicMac is an open source multi-image matching 
method using graphic-cut methods. The general strategy used by MicMac 
is a multiresolution (image pyramid) approach. At a given resolution, 
MicMac minimizes an energy function, combining the data term and a 
priori knowledge about the image pattern.

•	 Commercial software: Many types of commercial software are capable 
of matching multiview imagery. For example, in large photogrammetry 
software, SURE (Institute for Photogrammetry, 2014) matches a reference 
image to a set of adjacent images. The efficiency of processing is claimed to 
be increased by utilizing parallel processing and hierarchical optimization. 
The NGATE module of SOCET SET (BAE Systems, 2015) claims to 
address multisensor triangulation. The ERDAS Imagine Photogrammetry 
(formerly Leica Photogrammetry Suite) provides flexible options (sparse, 
dense, and semi-global matching [SGM] matching) to match multi-images 
(a pairwise method). In more computer-vision-oriented standalone software 
packages, such as PhotoScan (Agisoft, 2014) and Pix4Dmapper (Pix4D, 
2015), a complete automated workflow is implemented to process multi-
images and to generate various products (e.g., point clouds, digital terrain 
model [DTM], DSM, reconstructed 3D scenes).

In addition, multiview image matching methods in computer vision that are designed 
to match general images are widely available; readers are referred to Seitz et al. (2015).
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5.4.2  Accuracy of Different Multi-Image Matching Methods

Reliable point clouds derived from multi-image matching have been reported in 
recent studies (e.g., Remondino et al., 2014; Seitz et al., 2006; Stumpf et al., 2015) 
and reflect the exciting progress in this subfield. These studies report point clouds 
derived from multi-image matching with accuracy close to that of LiDAR; terrestrial 
and airborne LiDAR scans have a point cloud accuracy of about 0.01 m (Abellán 
et al., 2014) and 0.15 m (Jaboyedoff et al., 2012), respectively. Table 5.4 is a list of 
selected recent studies on assessing multi-image matching accuracy.

Besides the qualitative and quantitative measures used in Table 5.4, program 
running time is another frequently used criterion for multi-image matching 
evaluation. But computing time relies on computer configuration, image size, and 
scene complexity; thus, it is inappropriate for cross-study comparison. There are 
newly developed strategies to address issues with the aforementioned methods, from 

TABLE 5.4
List of Selected Accuracy Studies on Multi-Image Matching

Sources Data Sets
Matching 
Methods Accuracy Measure

Seitz et al. 
(2006); 
Furukawa 
and Ponce 
(2010)

Two terrestrial data 
sets: 317 and 363 
images

PMVS Accuracy: 90% of the 
reconstruction is 
within 0.42–
0.82 mm of the 
ground truth mesh 
(GTM)

Completeness: 
94.3%–98.8% of the 
points on the GTM 
are within 1.25 mm of 
the reconstruction

Remondino 
et al. (2014)

Five terrestrial data 
sets: 6–12 images

SURE 
MicMac 
PMVS 
PhotoScan

Distance deviations 
from reconstructed 
object to GTM or 
the known shape are 
less than 0.75 mm

Qualitative analysis 
(profiles or cross 
sections): Compare 
the reconstructed 
shape with the known 
surface shape

Remondino 
et al. (2014)

Three aerial data 
sets: 6–10 images

SURE 
MicMac 
PMVS 
PhotoScan

Qualitative analysis (profiles): Compare the 
reconstructed shape with the known surface 
shape, such as roof shape

Stumpf et al. 
(2015)

Three aerial data 
sets: 88–168 
images

MicMac 
PMVS

Mean absolute error 
(MAE) between 
reconstructed points 
and LiDAR points: 
from 0.016 to 
0.033 m

Root-mean-square 
error (RMSE) 
between reconstructed 
points and LiDAR 
points: from 0.027 to 
0.056 m

Zhu et al. 
(2015)

Four terrestrial data 
sets: 16–48 
images

PatchMatch+ 
MPGC

Accuracy: 90% of the 
reconstruction is 
within 0.38–
0.48 mm of the 
GTM

Completeness: 
95.4%–99.2% the 
points on the GTM 
are within 1.25 mm of 
the reconstruction
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the perspectives of initial value sensitivity, convergence speed, and computational 
memory requirements (e.g., Li et al., 2015).

Regarding the multiview matching method performance, Stumpf et al. (2015) 
reported that MicMac provides higher accuracy, better coverage, and higher point 
density than that of PMVS. But the authors are inclined to agree that no ranking 
pertaining to accuracy is provided for current multiview matching methods, as stated 
in Remondino et al. (2014). This is because multi-image matching methods are still 
being improved and developed with new techniques; furthermore, the level of manual 
intervention, such as tie point selection, search window size adjustment, and successful 
matching correlation threshold setting, affects the performance comparison.

5.4.3 E fficiency and Robustness

Multi-image matching exploits redundant image information to improve matching 
accuracy; however, the computation costs are multiplied at the same time. Matching 
efficiency is critical for real-time matching applications (e.g., robot-aided navigation) 
and image matching for large areas (Ginzler & Hobi, 2015). Apart from graphic 
hardware acceleration, such as programmable graphics processing units (GPUs) for 
fast stereo-image matching (e.g., Vineet & Narayanan, 2008), software optimization 
is another feasible method to improve the performance of multi-image matching.

The nature of multiview image matching is suitable for parallel processing. For 
example, in methods that treat multi-images as stereo pairs, multiple stereo pairs 
can be processed simultaneously. Large-scale images can also be split into tiles first 
and processed in parallel for the same purpose. Moreover, many studies develop 
strategies to reduce computational complexity without sacrificing disparity accuracy. 
For instance, semiglobal matching performs a fast approximation by replacing the 
2D energy function with the summary of 8- or 16-directional 1D paths to accelerate 
the matching but largely preserve the accuracy (Hirschmuller, 2008). In Rogmans 
et al. (2009), a flexible GPU-accelerated software model was developed to implement 
recent real-time algorithms focusing on local cost aggregation and image warping 
modules. In Yu et al. (2010), new algorithms and code optimization techniques were 
proposed to effectively map massive parallel platforms. In Arranz et al. (2012), new 
data and smoothing terms were defined, including a new parameter R in the model, in 
order to reduce the computational complexity of the stereo matching problem while 
maintaining the resolution in the disparity domain.

5.5  BROADER DISCUSSION AND NEW TRENDS

5.5.1  Frame Sensors versus Linear Array Sensors

Image sensors have developed from frame cameras in their early stages to recent 
scanline sensors on commercial satellites, especially high-resolution optical sensors. 
For a frame image (also referred to as a perspective image or a pinhole image), 
a rigorous sensor model is applied, and the possible corresponding points for a 
point in the reference image fall along a straight epipolar line in another search 
image. However, this is not the case for linear array sensors (also mentioned as 
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pushbroom sensors) because the imaging center changes for each scan line, which 
leads to curvilinear epipolar curves (e.g., Kim, 2000). Therefore, the classic epipolar 
constraint and stereorectification methods (Szeliski, 2010) designed for frame images 
cannot be directly applied to linear array images.

Epipolar geometry is critical for efficient and accurate multi-image matching, 
especially in large areas. As pointed out in Franchis et al. (2014), three different 
strategies are used to cope with nonstraight epipolar curves during image matching. 
Some studies propose to perform stereo matching by directly following the nonstraight 
epipolar curves (e.g., Hirschmuller, 2008; Hirschmüller et al., 2005). Other studies 
approximate the linear array sensor with an affine camera model (e.g., Morgan et al., 
2006; Wang et al., 2011) or low-order polynomials (Zhang, 2005). Finally, epipolar 
image resampling can also be established by reassigning the generated conjugate 
epipolar curve pair points to satisfy the epipolar resampling image condition (e.g., 
Oh et al., 2010).

5.5.2 M ultisensor and Multisource Image Matching

Images accumulated over time at the same area provide alternative image sources 
for matching between multitemporal, multisensor, multiresolution images with 
illumination, rotation, and scale differences. Multisource image matching takes 
advantage of using existing images to decrease project costs. However, it is also 
challenging because many implicit assumptions made for current image matching 
become invalid. For instance, the atmospheric and illumination conditions for along-
track stereo-image triplets are almost identical. These images also have the same or 
very similar spatial resolution, and the same vegetation growth stage on the ground 
(Baltsavias et al., 2008), without major ground object change. Multisource image 
matching lacks consistency among images; thus, advanced matching methods (Jeong 
et al., 2015) are required for images acquired from a broad range of sensors.

In multisource image matching, image intensity is no longer a dominating 
matching feature, unless matching images can be adjusted toward similar spatial 
resolution and intensity distribution. Conversely, feature matching is usually more 
stable than intensity matching (Gruen, 2012) if images are obtained under different 
illumination and atmospheric conditions. A series of existing matching costs were 
evaluated in Hirschmuller and Scharstein (2009). The Census Transform (Zabih & 
Woodfill, 1994), which converts each pixel inside a moving window into a bit vector 
representing which neighbors are above or below the central pixel, was found to be 
robust against large-scale, nonstationary exposure and illumination changes. In Tack 
et al. (2012b) and Aguilar et al. (2014), cross-sensor optical images were matched 
after radiometric and geometric normalization of the multitemporal and multisensor 
imagery. In Sedaghat et al. (2012), multisource optical imagery was matched via a 
combination of techniques, including the SIFT algorithm, the Harris corner detector, 
the LSM approach, a robust control network construction technique, and a new target 
matching strategy based on distance and angle differences.

Image matching among optical and microwave radar images is more complicated 
than that among multisensor optical images. Theoretically, similarity measures exist 
between microwave and optical images because both images are projections of the 
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same ground scene and share certain common properties. Practically, optical and 
microwave images reveal different characteristics due to different image acquisition 
techniques. It is challenging to build a similarity measure similar to the ones applied 
to optical image matching because large geometric distortions and the displacement 
of ground features exist between optical and microwave images (OTB Development 
Team, 2014). For instance, in layover areas of synthetic-aperture radar (SAR) imagery, 
the order of ground objects is inverted and opposite to that in optical imagery; thus, 
window-based methods will fail to match optical and radar imagery because such 
methods rely on ground object consistency. Further effort is required to design 
effective and robust similarity measures between microwave and optical images.

5.5.3 C hallenges, Limitations, and Opportunities

The progress of multi-image matching in recent years has included the integration 
of correlation algorithms, consistency measures, visibility models, shape knowledge, 
constraints, and minimization approaches in a multistep procedure (Remondino et al., 
2014). Image matching, however, is still and will continue to be an imperfect solution 
because of its mathematic foundation (ill-posed problem) and inevitably failed ground 
objects (e.g., occlusions, transparent, and moving ground objects). There are many 
challenges and limitations, but also opportunities that accompany the development 
of multi-image matching at the current stage.

5.5.3.1  The Big Picture
Multi-image matching methods are still immature, and methods that modify and 
refine existing matching methods will be in the mainstream in the coming decade. 
Multi-image matching is a complicated variant of stereo-image matching; hence, 
stereo-image matching techniques will directly influence multi-image matching. New 
feature extraction algorithms, image matching methods, and optimization strategies 
will be designed. Also, the development of multi-image matching in computer 
vision is stimulated by easily accessible consumer cameras and massive images; 
technical breakthroughs of multi-image matching in computer vision will transfer to 
photogrammetry and apply to 3D reconstruction of the Earth’s surface.

5.5.3.2  Computation Efficiency
Computing time is still a bottleneck for current multi-image matching. Less than 50 
images of 640 by 480 pixel size usually requires at least half an hour to run matching 
and reconstruction (e.g., Furukawa & Ponce, 2010; Li et al., 2015). Dense image 
matching is so time consuming that it is currently impossible to apply in real-time 
applications such as virtual environment navigation. The development of computer 
hardware, such as the popular use of GPUs, may mitigate this issue. Improving 
computational efficiency also influences the development direction of multi-image 
matching methods.

5.5.3.3  Accuracy Assessment
Evaluating the multi-image matching results is critical for further method comparison 
and improvement. The difficulty of evaluating 3D products (e.g., point cloud, mesh) 
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after multi-image matching is twofold. On one hand, it is difficult to collect reliable 
ground truth in a 3D environment. A LiDAR point cloud can be dense and accurate 
but the LiDAR equipment is still cumbersome and expensive, especially for aerial 
surveys. Manual digitalization in a virtual 3D environment is labor intensive and time 
consuming. The 3D reference data built from construction maps are constrained by 
map availability and are not feasible in natural landscapes. The management of 3D 
reference data and the conversion between various data formats is another concern 
when highly accurate reference data are required. On the other hand, effective and 
standardized accuracy measures are lacking in a 3D environment. The evaluation 
is more complicated and computation heavy in 3D space than in 2D space (Zeng 
et al., 2014). Existing studies used various qualitative (visual effects, profile, or cross 
section) and quantitative (distance, point density) measures to evaluate accuracy. 
Concise, effective, standardized, and easy-to-compute measures are still necessary 
to assess not only the accuracy of the point cloud itself, but also its capability to 
maintain a ground object’s geometric shape and topology.

5.5.3.4  Multisource Image Matching
The combination of multi-image matching and LiDAR scanning, especially in 
terrestrial surveys, is a promising field for accurate mapping and reconstruction. 
LiDAR point clouds provide ground control points and assistance for multi-image 
matching, whereas multi-image matching provides extra spectral (color) information 
and generates even denser point clouds than LiDAR (theoretically, 100 points/m2 
for 10 cm resolution images after matching). Such a combination may happen at 
the hardware level, using hybrid sensors to exploit the advantages. Multisource 
and cross-sensor image matching is another possible development trend for multi-
image matching that will admittedly be challenging. The cooperation of image 
information from both optical and microwave sensors will vitalize multi-image 
matching, with a fundamental change in similarity measures. Current intensity-based 
similarity measures will be replaced by more generalized measures. Multisource 
image matching also stimulates new applications because of its ability to reuse 
multitemporal, multiresolution, and multisensor images.

5.6  CONCLUSIONS

In summary, this chapter has systematically elaborated on the fundamental issues 
regarding multi-image matching. Based on the newest progress in photogrammetry, 
a clear framework for the fundamental concepts of multi-image matching has been 
described. Multi-image matching from both image space and object space has been 
discussed in the context of modern sensor models. A series of equations related to the 
matching were listed to standardize the concepts and procedures.

Critical techniques for image orientation, matching candidate searching, similarity 
measures, and 3D surface representation were summarized. Based on the core 
principles, further discussion was provided on refining and accelerating the matching 
process, including matching parameter selection, matching primitives, global 
optimization, and occlusion processing. Finally, other issues relating to multi-image 
matching were discussed, covering the impact of the difference of frame sensors 
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and linear array sensor on image matching, the matching steps for multisource and 
cross-sensor images, the image matching differences between photogrammetry 
and computer vision, the matching efficiency and optimization for hardware and 
software, and currently available multi-image matching software. The future of multi-
image matching will continue to enhance the current methods, improve computing 
efficiency, develop efficient and standardized accuracy assessment methods, and 
explore the possibilities of multisensor image matching.
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6 High-Resolution 
Radar Data Processing 
and Applications

Joseph R. Buckley

6.1  FUNDAMENTALS OF SYNTHETIC APERTURE RADAR

There are many treatises in the literature that lay out in detail the principles of synthetic-
aperture radar (SAR) (Curlander and McDonough 1991; Henderson and Lewis 1998). The 
reader is directed to them for a complete description of the theory of SAR. What follows 
here is a condensed, essentially nonmathematical presentation of the fundamentals of 
SAR that are relevant to the high-resolution imaging of natural environments.
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6.1.1 B asic Terminology and Electromagnetics

Radar is an active remote sensing system in which a radio signal is sent out from an 
antenna, and the echo from a target is received. Invented in the 1930s and brought 
to maturity in the Second World War, this system is fundamentally different from 
all other remote sensing systems. It provides its own signal, allowing it to operate 
in darkness as well as sunlight (as does LiDAR), and operates at sufficiently low 
frequency to be reasonably immune to the effects of clouds and weather. The basic 
operating principle is that the radar emits pulses of electromagnetic energy and 
records the time and intensity of the echoes resulting from those pulses. The time 
from emission of a pulse to the receipt of its echo, when multiplied by the speed 
of light, determines the total path length the pulse has traveled, which is twice the 
distance between radar and target. An image is constructed from all the echoes 
received by the radar. Consequently, spaceborne radars must be side-looking, not 
nadir-looking like most optical sensors.

Most spaceborne radar systems are monostatic, meaning that the transmitter and 
receiver share the same antenna on the satellite. Bistatic systems are those where 
the transmit and receive antennae are separated, either on the same satellite or on 
different ones. The following discussion assumes a monostatic system.

The operation of all radar systems is governed by the following equation:

	
P PG

R R
Ar t t e= × × × ×

1
4

1
42 2π

σ
π 	

(6.1)

where Pr and Pt are the received and transmitted power respectively, Gt is the antenna 
gain, Ae is the effective antenna area, R is the distance between the radar and the 
target, and σ is the radar cross section (Skolnik 1990). The right side of this equation 
is divided into five parts: the first is the amount of power emitted by the radar in the 
direction of the target, the second is the inverse square dispersion of the transmitted 
signal, the third is the interaction of the signal with the target, the fourth is the inverse 
square dispersion of the reflected signal, and the last is the area of the antenna to 
receive the reflected signal.

When an electromagnetic wave is incident on a surface, the wave is absorbed 
by dielectric dipoles on the surface and then reradiated (Elachi and van Zyl 2006, 
p. 202). The radar cross section, σ, is a measure of this reradiation. By definition, it 
is the ratio of the actual reflected radar intensity to the intensity of reflection from an 
isotropic reflector. It contains all the information on how the radar signal is modified 
by the target. Since the value can range over many orders of magnitude, it is usually 
displayed logarithmically in decibels.

The radar backscatter cross section is affected by many bio- and geophysical 
parameters. It is sensitive to the surface morphology on scales similar to or greater 
than the wavelength of the radar, and to the dielectric constant of the surface. This 
dielectric constant is in turn dependent not only on the surface material but also on the 
water content of the material. The relatively long wavelength of radar (in comparison 
to optical wavelengths) means that there is some penetration of the surface by the 
radar signal, and hence that the reradiated response comes from the material below 
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the surface, as well as from the interface itself. This effect may penetrate up to a few 
wavelengths deep into the material.

Spaceborne radar operates in the microwave region of the electromagnetic 
spectrum, in a nominal range from about 3 to 70 cm. Much of this spectral region 
is allocated for other uses, so only a few narrow bands are available for SAR. These 
bands are shown in Table 6.1. The majority of SAR systems currently in space operate 
in C band, with a few systems in X and L bands.

6.1.2  Aperture Synthesis and Image Formation

The angular beam width of emissions from a radar antenna is defined by

	
θ λ

=
L 	

(6.2)

where λ is the radar wavelength, L is the length of the radar antenna, and θ is in 
radians. For a satellite at an altitude h from the ground, looking at an angle ϕ from 
the vertical (the incidence angle), Equation 6.2 gives a ground resolution of (Elachi 
and van Zyl 2006, Eq 6-73)

	
X

h

L
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(6.3)

When populated with values appropriate for a modern spaceborne radar, in this 
case RADARSAT-2, the raw ground resolution is
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×
°
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(6.4)

This resolution is evidently far too coarse for useful imaging of the Earth’s surface 
except in the broadest of senses. Since the radar operating wavelength is restricted 
to a relatively small range of values, as is the satellite’s orbital altitude, the only 
parameter that can be varied in Equation 6.3 is the antenna length. To achieve a 
ground resolution of 10 m, an antenna length of L = 5.88 km is required. It is not 

TABLE 6.1
Bands and Wavelengths Available for Space-Borne SAR

Band Nominal Wavelength (cm)

X 3

C 5

S 10

L 25

P 70
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currently practical to place a rigid structure of this length into Earth orbit, so such an 
antenna must be synthesized mathematically. The key observation here is that a target 
on the ground returns a reflection to the satellite for the entire time it is illuminated 
by the radar beam. Both the magnitude and phase of the echoes from each pulse are 
recorded, and then are recombined mathematically to simulate the response that 
would have been received by a physical antenna of that length. The actual process is 
rather computationally intense (Cumming and Wong 2005).

Noting that the size of the antenna footprint on the ground is

	
L =

2πh
L 	

(6.5)

a point P on the ground will be in this footprint during the time that the satellite 
moves this distance, therefore L is also the length of the synthetic aperture. This 
aperture will have an angular beamwidth of

	
θ λ
s

L

h
= =

L 2 	
(6.6)

Leading to the result that

	
X h

L
s s= =θ

2 	
(6.7)

where Xs is the size of the footprint of the synthetic aperture, and hence the smallest 
resolvable distance on the ground (Elachi and van Zyl 2006, pp. 250–251). This 
result is perhaps counterintuitive for two reasons. First, the synthetic-aperture radar 
resolution is independent of the altitude of the sensor, and second, the smaller the 
antenna, the finer the resolution. There are engineering constraints on antenna size 
that limit how small it can be made, but physical antenna lengths between 5 and 15 m 
are in use in the current generation of SAR satellites, so resolution of a few meters is 
achievable with spaceborne SAR.

There are two basic modes of image acquisition: stripmap, where the antenna beam 
is pointed perpendicularly to the satellite flight path, and spotlight, where the beam 
is electronically steered to stay pointed at a specific location on the ground for some 
period of time, up to the entire time that location is visible from the satellite. Stripmap 
mode has the advantage of allowing continuous acquisition parallel to the flight path 
of the satellite, while spotlight mode acquires a finer resolution image at the expense 
of only being able to acquire discontinuous snapshots along the flight path.

6.1.3 C oherent and Incoherent Scattering

Radar waves interact significantly only with structures that are similar to or larger than 
the wavelength of the transmitted signal. Structures smaller than the radar wavelength 
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are essentially invisible to the radar. Consequently, the area covered by the footprint 
of the radar may be considered to be composed of a large number of independent 
scatterers, each the size of the radar wavelength. For example, if a 5 cm radar wave is 
incident upon a 10 × 10 m footprint, there will be ( . . ) ( . . )10 0 0 05 10 0 0 05 4 104/ /× = ×  
individual scatterers. Since they are all illuminated by a coherent wave front from 
the radar, the reflected wave is the vector sum of the responses from each of these 
scatterers. If there is one strong reflecting object within the footprint, such as a 
building, pole, or other man-made object, then its echo can dominate the echoes from 
weaker scatterers like natural terrain, and the overall response from the footprint will 
be just that of the strong reflector (a discrete scatterer). If, on the other hand, there are 
no single strong reflectors, then most or all of the individual scatterers will contribute 
to the backscatter (a distributed scatterer). Natural surfaces tend to be distributed, 
while man-made objects tend to be discrete. Whether the response from a footprint 
or, alternatively, a pixel in the image, is discrete or distributed is significant to the 
processing and interpretation of the image.

6.1.4 S peckle

In the case of distributed scatterers within a pixel, it may be assumed that the 
magnitudes of the responses from individual scatterers are statistically distributed 
according to a Rayleigh distribution, and the phases according to a uniform 
distribution (Elachi and van Zyl 2006, pp. 244–246). A significant result of these 
distributions is that there is a statistical variability about the mean value of the 
magnitude that is proportional to the magnitude. This variability is distinct from 
the additive thermal and system noise common in optical imagery. Because of 
the appearance of this statistical noise in the image, it is commonly referred to 
as speckle. As with any electronic radio system, there will also be system noise 
present.

	 V Vm t= + +( )1 υ ε 	 (6.8)

Here, the measured backscatter voltage is Vm, the “true” voltage is Vt, the speckle 
is υ, and the system noise ε. Through good system design, system noise can be 
minimized, but speckle is unavoidable. The magnitude of speckle is significant, only 
3.66 dB lower than the “true” backscatter itself. For useful image interpretation, 
the effects of speckle must be minimized. Techniques for this minimization will be 
discussed in “Basic SAR Image Processing.”

6.1.5 T exture

Texture, a pixel-to-pixel variation in image intensity caused by subtle differences in 
the surface reflectivity, is a completely different phenomenon than speckle. Texture is 
a property of the reflecting surface, while speckle is a property of the image formation, 
independent of the surface. Texture does occur in SAR imagery, but is usually far less 
significant than speckle, so is not often used as a classifying parameter.
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6.1.6  Polarimetry

Electromagnetic waves are oscillations of perpendicular electric and magnetic fields 
that propagate in a direction such that both the electric and magnetic field oscillations 
are transverse to the direction of propagation. When an electromagnetic wave is 
generated from an antenna, then the plane of polarization of the electric field is fixed by 
the antenna, and hence so is the polarization of the signal. Radar signals are therefore, 
by definition, polarized. The plane of polarization may be either fixed in time, giving 
linear polarization, or varying in time, giving elliptical or circular polarization. All 
Earth-observing satellite radar systems to date use linear polarization.

The nomenclature for radar polarization arises from the earliest land-based 
systems, where the polarization was either horizontal, that is, the plane of oscillation 
of the electromagnetic wave was parallel to the horizon, or vertical, where the plane 
of oscillation was perpendicular to the horizon. Spaceborne systems retain this 
terminology, where horizontal polarization is horizontal, but vertical polarization, 
being perpendicular to both the horizon and to the direction of propagation, is not 
vertical.

A detailed discussion of the theoretical basis for radar polarimetry is presented by 
Boerner et al. (1998) and Cloude (2010), among others. What follows here is a very 
basic summary.

Transmitting and receiving polarizations are, in principle, independent of one 
another. Given appropriate antenna design, it is possible to transmit one polarization 
and receive a different one. The possible combinations are horizontal transmit, 
horizontal receive (HH); vertical transmit, vertical receive (VV); horizontal transmit, 
vertical receive (HV); and vertical transmit, horizontal receive (VH).

When multiple polarizations are considered, the radar cross section may be 
redefined as a four-element matrix

	
σ
σ σ
σ σ

=












HH HV

VH VV 	
(6.9)

showing that the reflecting surface may react differently to each of the polarization 
combinations. The signal s that the radar receives therefore also has four complex 
terms

	
s =













s s

s s
HH HV

VH VV 	
(6.10)

These four terms are all complex numbers, representing both amplitude and 
phase of the backscatter. The phase measured here is the total number of SAR 
wavelengths between the satellite and the radar footprint on the Earth’s surface. 
This number is large and not meaningful in any useful sense. However, the relative 
phase between terms is meaningful, so the phase of one term is subtracted from all 
four phases, thereby setting one to zero and the other three relative to it. Therefore, 
there are a total of seven independent values (four magnitudes, three relative phases) 
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potentially measurable from an appropriately designed SAR. However, under almost 
all circumstances in a natural or man-made environment the two cross-polarized 
terms are equal, that is, s sHV VH= , removing two of these seven parameters. Due to 
this redundancy, it is usual to rewrite the scattering matrix as a feature vector, either 
lexicographic

	 f3 2L s s s= [ ]HH HV VV
T
	 (6.11)

or Pauli

	 f3 2P s s s s s= + −[ ]HH VV HH VV HV
T
	 (6.12)

It is from either of these feature vectors that most polarimetric SAR imagery 
analysis ensues.

Operational spaceborne SAR systems vary in the amount of polarimetric 
information they acquire, and will return from one to five polarimetric parameters, 
depending on the specific system design and imaging mode. The first generation 
of SAR satellites (Seasat, ERS-1, ERS-2, Almaz) were capable of transmitting 
and receiving in only one polarization, either HH or VV, and so only returned a 
single magnitude for each image pixel (synthetic radar footprint). Many subsequent 
satellite SARs have been capable of transmitting and receiving multiple polarizations, 
giving rise to cross-polarized (HV or VH) modes returning one magnitude value 
per pixel, dual-polarization (HH/HV or VV/VH) modes that return two magnitudes 
and possibly the interchannel phase, and quad-polarization (HH, HV, VH, VV) modes 
that usually return all five available parameters. While it might seem that getting 
more information through quad-polarization imagery is better than getting less 
through other modes of imaging, there are trade-offs of image extent and resolution 
that make the choice of imaging mode application specific.

6.2  BASIC SAR IMAGE PROCESSING

6.2.1 M ultilooking and Speckle Reduction

Although the pixel size of a SAR image may be small enough to be considered 
high resolution, the influence of speckle in the image makes the image at maximum 
resolution practically unusable. In order to reduce the effect of speckle, some 
averaging of the image is necessary. A simple technique used in the early days of 
SAR processing was multilooking. This involved splitting the synthetic aperture into 
a number of segments (looks), processing each one separately, and averaging the 
resulting images. Since each look was computed using a fraction of the original 
synthetic aperture, the resolution of the image was reduced, that is, if the aperture was 
split into four segments, the resolution of the image was reduced by a factor of four. 
Reducing the aperture size also had the beneficial effect of reducing the computational 
time required to produce the image. In the early years of SAR processing, computing 
power was a limiting factor, but, with the advances in computer hardware and software 
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design, this is no longer the case. It is standard now to process SAR imagery to the 
single look complex (SLC) form. This form retains the magnitude and phase of the 
SAR signal in each pixel, but also retains all the speckle. Speckle reduction is now 
carried out in the data processing after image formation from the raw SAR data.

Although modern processing techniques no longer rely on multilook processing, 
the terminology has been maintained. The number of looks corresponds roughly to 
the number of pixels averaged into each pixel of the speckle filtered image. As the 
number of looks, or the number of pixels averaged, increases, the severity of speckle 
decreases as does its influence on polarimetric parameters (Lee et al. 2008).

There are two basic classes of spatial speckle filters: nonadaptive and adaptive. 
Nonadaptive filters work on the image as a whole and do not consider local image 
statistics. The simplest of these is a block, or boxcar, average of the image
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where M and N are odd integers and usually M = N. Each pixel is replaced by the 
average of the pixels around it. This type of filter, however, reduces the resolution of 
the image by a ratio of 1 : MN, a result that is not useful for high-resolution imagery. 
Adaptive filters use the image statistics in the local area around a pixel to determine 
how to best estimate a speckle-reduced value for the pixel. Examples are Lee (1981) 
or Frost et al. (1982). These filters smooth homogeneous areas while preserving the 
sharpness of boundaries between them.

Speckle reduction in polarimetric images is more complicated due to the 
requirement to maintain the phase between channels. Several adaptive filters have 
been developed for polarimetric including the Lopez filter (López-Martínez and 
Fabregas 2003), the refined Lee filter (Lee et al. 1999b), and the Lee sigma filter 
(Lee et al. 2009). This last-mentioned filter preserves discrete scatterers as well as 
edges between regions of distributed scatterers. Because it preserves the fine structure 
in an image while reducing the overall effect of speckle, filtering of this sort is a 
requirement for high-resolution use of SAR imagery. An example of this filtering 
is shown in Figure 6.1. This figure shows a RADARSAT-2 image of a solar power 
facility in northern China. The unfiltered image in Figure 6.1a shows a field of solar 
panels surrounded by a fence. The white dots near the bottom of the image are small 
buildings regularly spaced throughout the solar array. The larger bright area near 
the center of the image is a group of buildings. The panels themselves do not show 
up well in the image because they are smooth and are oriented facing south, and 
therefore reflect the radar energy away from the satellite. A road is visible on the 
right side of the image. In spite of the relatively homogeneous area of solar panels, the 
image appears very noisy. In Figure 6.1b, the image has been filtered through a 7 × 7 
boxcar (block) filter. The speckle has been significantly reduced, but the entire image 
is blurred. If only the statistics of the image in the larger homogeneous regions are 
important, then this filtering technique is excellent. In Figure 6.1c, the image has been 
filtered with a Lee sigma filter. The resolution of the small-scale features has been 
maintained, and the speckle in areas away from these features has been significantly 
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reduced, thus preserving the image statistics on both small and large scales. The only 
issue with this adaptive filtering is that different amounts of averaging are applied to 
different parts of the image and therefore the number of looks varies throughout the 
image, creating some theoretical difficulty in interpreting some statistical measures 
in the image. For most uses, however, this issue is not important, and this adaptive 
filtering produces a very usable product.

Under specific circumstances it is possible to use temporal filtering instead of 
spatial filtering. When the objects of interest in the scene are unlikely to change 
over time, then speckle filtering using a time series of imagery may be performed 
to maintain the original resolution of the imagery. The process usually used is the 
simple averaging of each pixel through the stack of imagery once the images have 
been coregistered. Thus, a stack of N images will yield N looks at each pixel location. 
This technique is often used to reduce speckle in man-made objects such as buildings 
and roads when an appropriate time series of imagery is available.

6.2.2  Polarimetric Parameters and Target Decomposition Theorems

Fully polarimetric radar contains five times as much information as do single channel 
systems. However, examination of the three channel amplitudes and two interchannel 
phases by themselves does not usually give much insight into the properties of 
the underlying surface. Some basic analysis of these parameters is necessary to 
provide this insight. The analysis is normally based on derived statistics from these 
parameters. A thorough review of these derived quantities and their interpretation is 
given in Touzi et al. (1992).

These analyses have now been largely supplanted by efforts to model the surface 
scattering properties, and to apply these models to the polarimetric data. In the 
general case of distributed scatterers, appropriate for natural surfaces and many larger 
structures, the surface backscatter is modeled as a combination of:

	 1.	Single bounce, or surface scattering: This sort of scattering comes from 
fields, water surfaces, pavement, and similar sorts of surfaces that are 
relatively smooth. In color imagery, this type of scattering is traditionally 
displayed in the blue channel.

(a) (b) (c)

FIGURE 6.1  Speckle filtering applied to a RADARSAT-2 image of a solar power facility: 
(a) unfiltered image; (b) boxcar filtered image; (c) Lee sigma filtered image.
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	 2.	Double bounce, or dihedral scattering: This scattering arises when the 
incoming radar signal is reflected off two surfaces perpendicular to each 
other. Examples of this sort of scattering include reflections off the ground 
then the side of a building or a tree trunk, or off a water surface then off 
stalks of emergent vegetation. In color imagery, this type of scattering is 
traditionally displayed in the red channel.

	 3.	Volume scattering: This scattering comes principally from vegetation, such 
as tree branches or bushy crops. In color imagery, this type of scattering is 
traditionally displayed in the green channel.

The Pauli feature vector Equation 6.12 contains some basic information about 
these types of scattering. The first term s sHH VV+ , is associated with single-
bounce backscatter, the second term, s sHH VV− , with double-bounce backscatter, 
and the third, sHV, with volume scattering. A resulting Pauli image, in which 
( , , )s s s s sHH VV HH VV HV+ − are displayed as (blue, red, green) can give a good general 
impression of the features of the landscape, but does not convey any sense of the 
actual amount of backscatter from different sources. To do that, use of a target 
decomposition theorem is required. These theorems may be either model based, 
or eigenvector/eigenvalue based. A thorough review of the basis of these models is 
presented by Cloude and Pottier (1996).

The starting point for most polarimetric modeling is either the polarimetric 
covariance matrix
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or the polarimetric coherency matrix
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The averaging implied by .  may be performed as part of the creation of the 
matrix, but is more often performed at the speckle filtering stage of image processing. 
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The matrix itself is computed on a pixel-by-pixel basis with no averaging, and then the 
matrix is processed through a speckle filter (Lee and Pottier 2009). Both the coherence 
and the coherency matrices contain nine independent parameters: six magnitudes and 
three off-diagonal phases. Due to the HV-VH symmetry, the elements below the 
diagonal are just the complex conjugates of those above the diagonal, and therefore 
do not contain any independent information. Note that the diagonal of the T matrix 
is just an averaged squared Pauli feature vector.

Model-based decompositions separate the total backscattered energy into amounts 
of surface, double-bounce, and volume energy. One of the first of these models was 
derived by Freeman and Durden (1998). This relatively simple model uses only five 
of the nine parameters in the coherency matrix. Omitting some of the information 
present in the full coherency matrix means that not all the information present in 
the polarimetric response of the surface is used. Although it has been shown to 
overestimate volume scattering, even to the point of exceeding the total backscatter 
(van Zyl et al. 2011), and can exhibit some instabilities, it is still in common use. 
Seeking improvements on this model, Yamaguchi et al. (2005), and subsequently 
Singh et al. (2013), added a fourth scattering type, helix scattering, that may arise from 
man-made structures and urban areas, and used more parameters in the coherency 
matrix to provide better and more stable estimates of the amounts of the different 
scattering types. van Zyl et al. (2011) proposed a revised three-component model in 
which the volume scatter was estimated stably.

The most commonly used eigenvalue/eigenvector decomposition is that of Cloude 
and Pottier (1997). In it, the eigenvalues and eigenvectors of the coherency matrix 
are determined as follows:
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where λi are the eigenvalues, and ui are the eigenvectors of the T matrix. The 
eigenvectors represent the three basic scattering mechanisms, and the eigenvalues their 
relative importance. If one eigenvector is much larger than the other two, then the pixel 
contains a single scattering type, and if all three are close to the same size, then there 
is no dominant scatterer. This behavior is presented in the three parameters entropy 
(H), average alpha angle (α), and anisotropy (A). Entropy is a measure of the disorder 
of the polarization, and ranges from 0 to 1, where 0 represents a single pure scattering 
type, and 1 represents complete disorder, with no dominant type. The average alpha 
angle defines the dominant scattering type. It has a range from 0° to 90°, where 0° 
represents surface scattering, 45° volume scattering, and 90° double-bounce scattering. 
Anisotropy represents the difference in magnitude of the second and third eigenvalues 
where 0 1≤ ≤A , 0 implying equality of the two lesser eigenvalues, and 1 implying the 
dominance of the second over the third. Images displaying these parameters, either 
singly or in combination, are often helpful in interpreting the polarimetric data.

Decomposition algorithms have recently been developed that combine model-
based with eigenvector approaches (van Zyl et al. 2011).
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6.2.3 I mage Classification and Segmentation

Before performing an image classification, it is useful to estimate the statistical 
likelihood of the separability of the classes. A metric that has been used is the 
Bhattacharyya distance (Morio et al. 2007). This metric is defined as
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where Mi and Mj are the centroids of two training groups of pixels and Σi and Σj are 
their respective covariance matrices. The first term estimates the separability due 
to the distance between the class means, and the second due to the class covariance 
matrices. From this equation, a Bayesian upper bound on the probability of correctly 
classifying two classes separated by a distance Dbhat may be defined as

	 εbhat bhat= −0 5. exp( )D 	 (6.18)

Table 6.2 shows the Bhattacharyya distance associated with the maximum 
classification error computed from Equation 6.18. To ascertain the probability of 
successful classification of more than two classes, an agglomerative procedure was 
used. First, the Bhattacharyya distance was computed between each pairing of 
classes. The two classes that are closest are combined into a single larger class, and 
then the process was repeated until only two classes remain.

The underlying statistical distribution of radar backscatter values for distributed 
targets is different from that of optical and thermal imaging sensors. While the raw 
backscatter values in a multipolarized system follow a multivariate complex Gaussian 
distribution, once they have been processed into a covariance or coherency matrix, 
they follow a complex Wishart distribution (Lee et al. 1999a). Consequently, it is 

TABLE 6.2
Maximum Classification Error and Bhattacharyya Distance

Maximum Classification Error Bhattacharyya Distance

0.05 2.30

0.10 1.61

0.15 1.20

0.20 0.92

0.25 0.69

0.30 0.51

0.35 0.36

0.40 0.22

0.45 0.11
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important when performing any classification operations on this imagery to use tools 
either based on these distributions or that are nonprobabilistic.

Lee et al. (1994) developed a supervised classification scheme based on minimizing 
Wishart distances from pixel cluster centers in the polarimetric covariance matrix 
that were defined by the training data set. This methodology was refined by Anfinsen 
et al. (2007).

In recent studies for imagery decomposed by any of the model-based techniques, 
supervised classification of images has shown good results from either a support 
vector machine (SVM) (Smith and Buckley 2011), or a random forest (Deschamps 
et al. 2012) methodology. Both methods do not rely on the particular statistical model 
underlying the data.

All these methods are, to some extent, arbitrary, in the sense that there is no 
absolute truth against which they can be tested. It has been shown that the 
classification accuracies of any of the model-based decompositions are similar, and 
are all reasonably high (Buckley and Smith 2015). It was also found that classification 
based on any multiple polarization imagery, whether quad polarization, compact 
polarization, or dual polarization, yielded reasonably high classification accuracy. 
However, the H/A/α decomposition showed a much lower accuracy, apparently 
because this decomposition does not use span (total power) information.

There have been extensive studies of the unsupervised classification of imagery 
decomposed by the H/A/α scheme. Cloude and Pottier (1997) classified imagery by 
dividing the H/α plane into nine arbitrary regions based on low, medium, or high 
entropy, and surface, volume, or double-bounce scattering. Since high entropy surface 
scattering was shown to be not possible theoretically, their classification resulted in 
eight distinct classes. Lee et al. (1999a) adapted their 1994 supervised classification 
protocol and used pixels in the eight classes defined by Cloude and Pottier as the 
initial data set, and iteratively computed class centroids that minimized Wishart 
distance, yielding eight unsupervised classes. Each of these classes were then split 
into two parts based on whether their anisotropy value was greater or less than 0.5. 
The iterative minimization procedure was repeated, yielding 16 classes.

One oddity of this procedure was that, as class centroids were moved in H/A/α 
space in response to the minimization procedure, they sometimes moved from one 
dominant scattering type to another. Lee et  al. (2004) revised this procedure to 
constrain class centroids from changing the dominant scattering type.

One property common to most of these classification procedures is that, in general, 
they perform as well as classifications based on optical imagery (Smith and Buckley 
2011). Given that the radar sensors function under all weather conditions and are 
independent of solar illumination, these polarimetric SAR systems can provide 
classified imagery more frequently and reliably than optical systems, and therefore 
are often the system of choice for regular monitoring programs.

6.3  SATELLITE SYSTEMS

The most recent generation of SAR satellites are quite versatile, and can operate in 
many different imaging modes. Four systems, representative of the current state of the 
art, are discussed here. They share some common properties in that their phased-array 
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antennas allow electronic beam steering to make image acquisition possible over 
a wide range of incidence angles and they all have some selectable polarimetric 
capability. They are all in polar dawn/dusk orbits to maximize their coverage of 
the Earth and the amount of time their solar panels are exposed to sunlight. Two 
of these systems operate in C band, and two in X band. Complete descriptions of 
these systems are not presented here since many of their capabilities lie in medium-
resolution, wide-area imaging and fall outside this volume’s focus on high-resolution 
imagery. No modes with range resolution greater than 15 m are considered. Only 
imaging capabilities with resolutions higher than this are discussed.

6.3.1 R ADARSAT-2

RADARSAT-2 is a Canadian polarimetric SAR satellite launched in December 2007. 
This satellite operates in C band at 5.406 GHz. It is capable of a wide range of 
imaging modes, polarizations, and incidence angles (MDA 2016). Table 6.3 gives 
some orbital parameters for the satellite, and Table 6.4 lists characteristics of the 
beam modes most relevant to high-resolution imaging. This satellite is capable of 
routine high-resolution quad-polarization imaging over moderate-sized areas, as well 
as dual-polarization imaging over larger swaths. Although much of the satellite’s 
capacity is used for operational and commercial purposes, a significant amount of 
capacity is used for research and application development.

6.3.2 T erraSAR-X/TanDEM-X

TerraSAR-X is an X-band (9.65 GHz) satellite designed, built, and operated by the 
German Aerospace Center (DLR) in conjunction with Astrium (now Airbus Defence 
and Space). It was launched on June 15, 2007. A second satellite, TanDEM-X, was 
launched on June 21, 2010.

The two identical satellites orbit in close formation to allow collection of 
imagery for the purpose of creating a digital elevation model (DEM) through SAR 
interferometry. Orbital characteristics of these satellites are given in Table 6.5, and the 
available high-resolution beam modes in Table 6.6 (Airbus Defence and Space 2014). 
DLR makes some of the satellites’ capacity available for research and application 
development. The satellites are also commercially available for customer-specified 
imaging in any imaging mode.

TABLE 6.3
RADARSAT-2 Orbital Characteristics

Characteristic Value

Orbital Altitude 798 km

Repeat Period 24 days

Orbit Inclination 98.6°

Orbital Period 100.7 min

Ascending Node 18 h
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6.3.3 S entinel-1

The Sentinel-1 mission is the European Radar Observatory for the Copernicus joint 
initiative of the European Commission (EC) and the European Space Agency (ESA) 
(ESA 2013). The two satellites of the constellation were launched April 3, 2014, and 

TABLE 6.4
RADARSAT-2 High-Resolution Modes

Mode
Resolution 

Range × Azimuth (m)
Swath Width 

(km) Polarization(s)

Incidence 
Angle 
Range

Standard 13.8 × 7.7 100 HH, HH + HV, VV, 
VV + VH, VH, HV

20°–50°

Wide 13.8 × 7.7 150 HH, HH + HV, VV, 
VV + VH, VH, HV

20°–45°

Extended High 13.5 × 7.7 75 HH 49°–60°

Extended Low 9.0 × 7.7 170 HH 10°–23°

Fine 5.2 × 7.7 50 HH, HH + HV, VV, 
VV + VH, VH, HV

30°–50°

Wide Fine 5.2 × 7.7 150 HH, HH + HV, VV, 
VV + VH, VH, HV

20°–45°

Extra Fine 3.1 × 4.6 125 HH, HV, VH, VV 22°–49°

Multilook Fine 3.1 × 4.6 50 HH, HV, VH, VV 30°–50°

Wide Multilook Fine 3.1 × 4.6 90 HH, HV, VH, VV 29°–50°

Ultrafine 1.6 × 2.8 20 HH, HV, VH, VV 20°–54°

Wide Ultrafine 1.6 × 2.8 50 HH, HV, VH, VV 29°–50°

Spotlight 1.3 × 0.4 18 HH, VV, HV, VH 20°–54°

Standard Quad 
Polarization

13.5 × 7.6 25 HH + HV + VH + VV 18°–49°

Wide Standard Quad 
Polarization

13.5 × 7.6 50 HH + HV + VH + VV 18°–42°

Fine Quad Polarization 5.2 × 7.6 25 HH + HV + VH + VV 18°–49°

Wide Fine Quad 
Polarization

5.2 × 7.6 50 HH + HV + VH + VV 18°–42°

TABLE 6.5
TerraSAR-X/TanDEM-X Orbital Characteristics

Characteristic Value

Orbital Altitude 514 km

Repeat Period 11 days

Orbit Inclination 97.44°

Orbital Period 94.79 min

Ascending Node 18 h
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April 25, 2016. They operate in C band (5.405 GHz). The satellites share a common 
orbit and are spaced 180° apart. The orbital parameters of these satellites are given 
in Table 6.7, and descriptions of the higher resolution modes in Table 6.8. They 
acquire imagery in the interferometric wide (IW) mode (VV/VV + VH) over land 
in a fixed operational scenario, and only change to other modes under exceptional 
circumstances. Note that they do not support any higher resolution spotlight modes. 
All imagery acquired is freely available.

6.3.4 COSMO -SkyMed

COSMO-SkyMed is an Italian constellation of four X-band (9.8 GHz) satellites 
launched between June 2007 and November 2010. The constellation was conceived by 

TABLE 6.6
TerraSAR-X/TanDEM-X High-Resolution Modes

Mode

Resolution 
Range × 

Azimuth (m) Swath Width (km) Polarization(s)

Incidence 
Angle 
Range

Staring Spotlight 0.6 × 0.24 4 VV, HH 20°–45°

High-Resolution 
Spotlight (300 MHz)

0.6 × 1.1 10 VV, HH 20°–55°

High-Resolution 
Spotlight

1.2 × 1.1 (single 
polarization)

1.2 × 2.2 (dual 
polarization)

10 VV, HH, HH + HV, 
VV + VH, 
VV + HH

20°–55°

Spotlight 1.2 × 1.7 1 (single 
polarization)

1.2 × 3.4 (dual 
polarization)

10 VV, HH, HH + HV, 
VV + VH, 
VV + HH

20°–55°

Stripmap 1.70–3.49 × 3.3 
(7.6 dual 
polarization)

30 (single 
polarization), 15 
(dual polarization)

VV, HH, HH + HV, 
VV + VH, 
HH + VV

20°–45°

ScanSAR 1.70–3.49 × 18.5 100 HH, VV 20°–45°

TABLE 6.7
Sentinel-1 Orbital Characteristics

Characteristic Value

Orbital Altitude 693 km

Repeat Period 12 days

Orbit Inclination 98.18°

Orbital Period 98.74 min

Ascending Node 18 h
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the Italian Space Agency (ASI), funded by the Italian Ministries of Research (MUR) 
and Defence (MoD), and operated by ASI and MoD. It is designed to serve the needs 
of both the military and civilian communities (ASI 2007). The four satellites share 
a common orbit, and are equispaced in it with 90° separation between them. Their 
orbital characteristics are shown in Table 6.9.

The satellites support both spotlight and stripmap modes with single-channel 
imagery in any combination of H or V transmitting and H or V receiving. 
There is also a dual-polarization stripmap mode in which any two polarimetric 
combinations may be acquired, but without phase information between the two 
channels. Imaging modes are listed in Table 6.10. While some of the constellation’s 
capacity is used by the Italian military, imagery may be acquired commercially to 
the user’s specification.

TABLE 6.8
Sentinel-1 High-Resolution Imaging Modes

Mode
Resolution 

Range × Azimuth (m) Swath Width (km) Polarization(s)
Incidence 

Angle Range

Stripmap 5 × 5 80 HH + HV, 
VV + VH

20°–47°

Interferometric 
Wide Swath

5 × 20 250 HH + HV, 
VV + VH

31°–46°

TABLE 6.9
COSMO-SkyMed Orbital Characteristics

Characteristic Value

Orbital Altitude 619.6 km

Repeat Period 16 days

Orbit Inclination 97.86°

Orbital Period 97.1 min

Ascending Node 06 h

TABLE 6.10
COSMOS-SkyMed High-Resolution Imaging Modes

Mode Resolution Range (m) Swath Width (km) Polarization(s)
Incidence 

Angle Range

Spotlight 2   1 10 HH, VV, HV, VH 25°–60°

Stripmap (HIMAGE)   3 40 HH, VV, HV, VH 25°–60°

Stripmap (PingPong) 15 30 Any two of HH, 
VV, HV, VH

25°–60°
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6.4  CASE STUDIES

6.4.1 I nvasive Species in Grasslands

The invasive weed species leafy spurge (Euphorbia esula) causes significant problems 
in the prairie grasslands of Western Canada. This plant, which is toxic to cattle, 
grows in dense patches and propagates robustly to the exclusion of native grassland 
species (Belcher and Wilson 1989). Eradication of this weed is very difficult due to 
its ability to propagate from root tips and from seeds that are propelled explosively 
up to 15 m from the plant (Thunhorst and Swearingen 2005). It is very difficult to 
map with multispectral optical imagery because it is only different in color from the 
surrounding grasses when its brilliant yellow flowers are in bloom. However, the plant 
is structurally different from grasses, and therefore ought to be visible in polarimetric 
SAR imagery.

Agriculture and Agri-Food Canada, through their Lethbridge Research and 
Development Centre under the direction of A. M. Smith, conducted a study in 
the grasslands of southern Alberta, Canada, to investigate the potential of using 
RADARSAT-2 quad-polarization imagery to detect and delineate leafy spurge. This 
study has been described in detail by Coleman (2010). The bulk of the following 
description is based on this document.

The study site was chosen in a coulee, a river valley deeply eroded into the 
relatively flat prairie. Twenty-five images were acquired between April and October 
2009 at three different incidence angles (beam modes): 23.17° (FQ4), 26.30° (FQ6), 

FIGURE 6.2  RADARSAT-2 FQ17 image over southern Alberta, Canada. The study area is 
shown by the white box. The total backscattered power of the image is displayed.
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and 37.22° (FQ17). Ground truth measurements were made in June, July, and August 
by mapping the edges of patches of leafy spurge with handheld global positioning 
system (GPS) units. Areas of other types of vegetation that could possibly be confused 
with leafy spurge in SAR imagery were also mapped. Further validation information 
was collected through ground-based and aerial photography.

A typical image is shown in Figure 6.2. The SAR imagery was processed through 
a Lee sigma filter, georeferenced using the image tie points provided in the image 
header, and then decomposed using both the Freeman-Durden and the Cloude-Pottier 
methods. These two decompositions, along with the coherency matrix, were used in 
supervised classification of the imagery. Some results of the experiment are shown 
in Figure 6.3.

The most detailed field work and ground truth sample collection was done in the 
two small rectangular areas shown in Figure 6.3a.

Eight classes were chosen to represent the range of natural and human-influenced 
conditions in the region. They are listed in Table 6.11. They are grouped into flat 
surfaces, shrubs, tall vegetation, and infrastructure. The total size of training sets for 
these classes shows that the individual regions of each are very small. These small 
sizes pose a problem for SAR classification since it is usual for the effects of speckle, 
even though reduced through filtering, to be mitigated by the use of large training 

RADARSAT-2 Data and Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2009) – All Rights Reserved
RADARSAT is an official mark of the Canadian Space Agency
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FIGURE 6.3  (a) The region considered by the study, showing the two areas where ground 
truth measurements were made. (b) SVM classification of the layer stack of the average 
coherency matrices at the three incidence angles. (c) Bhattacharyya distance tree for the 
averaged coherency matrices for the FQ4 beam mode. (d) Classification accuracy results for 
all beam modes and combinations of imagery and classification basis.
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data sets. One of the aims of this study, then, was to see if the SAR imagery could be 
pushed into yielding a high-resolution classification result.

Since the number of pixels in each class was small, tests were performed on various 
combinations of imagery to determine the best way of identifying leafy spurge. The 
following combinations of imagery were used:

•	 An individual image: One image from each of the three beam modes 
(incidence angles) was chosen.

•	 Averages of all images at a specific incidence angle: In this 
procedure, there were three (or nine) parameters per pixel 
( , , ),( , , ) ( , , , , , , )D V S H A T i j iFD FD FD ijα  or = =1 3 3… … . Three averages were 
computed, one for each incidence angle.

•	 Layer stacked at each incidence angle: In this procedure, each image was 
considered to be independent of the others, so, for a three image set, classifications 
used nine parameters for the decompositions and 27 for the coherency matrix. 
Three-layer stacks were created, one for each incidence angle.

•	 A layer stack of all single images: Since there were three images used, 
classifications used nine parameters for the decompositions and 27 for the 
coherency matrix.

•	 A layer stack of the three averaged images: Classifications of this stack used 
nine parameters for the decompositions and 27 for the coherency matrix.

As a preliminary check on the probability of meaningful classification, 
Bhattacharyya distances were computed for the averaged coherency matrices at the 
three incidence angles. Results of this procedure for the FQ4 beam mode are shown 
in Figure 6.3c.

In this figure, the dash-dot line represents 95% confidence in classification 
accuracy, the dotted line 90%, and the dashed line 55%. It can be seen that the water 
class, the infrastructure (pump jack) class, and the tree class should all be recognized 
as having better than 95% accuracy and can be separated from the other classes. Grass 
and bare ground should be correctly classified as having better than 90% accuracy, 
and the three shrub classes—leafy spurge, buckbrush, and sagebrush—as having 

TABLE 6.11
Classes Used for Invasive Weed Study

Class Number Class Content Class Category Training Pixels

1 Water

Flat Surfaces

54

2 Bare Ground 74

3 Grass 87

4 Trees Tall Vegetation 60

5 Pump Jack Human Infrastructure 125

6 Leafy Spurge Shrub 76

7 Buckbrush 66

8 Sage 39
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better than 80% accuracy. Results for the other two incidence angles were similar in 
form, but with marginally lower accuracy estimates.

Classification of the imagery was performed using the support vector machine 
methodology. An example of the output of the classifier is shown in Figure 6.3b.

The classification appears to be subjectively correct, with trees and shrubs near the 
river banks, bare soil on the steep slopes of the valley, and grass on the surrounding 
prairie. A quantitative assessment of the quality of the classification is more difficult 
to make. The training areas were very small, and there was no independent validation 
data set. It was possible to compute a producer’s accuracy, that is, the percentage of 
training area pixels classified correctly. This was expected to be overly optimistic 
(Lillesand et al. 2008, p. 578), but seemed to be the only quantifiable measure that 
could be extracted from the classification.

The classification was run for all the combinations of imagery listed above, for the 
Cloude-Pottier H/A/α eigenvalue decomposition, the Freeman-Durden decomposition, 
a combination of both the Cloude-Pottier and Freeman-Durden decompositions, and 
the full coherency (T) matrix. A summary of the results is shown in Figure 6.3d.

Several trends are evident from this figure. The Cloude-Pottier decomposition 
performed more poorly than the others. This result was not unexpected since its 
algorithm does not use the pixel intensity (span). This quantity is important in both 
the Freeman-Durden and coherency matrix formulations. The more information 
input to the classifier, the better the result, with the nine-term coherency matrix 
performing better than the six-term combination, which in turn performed better than 
the Freeman-Durden. Incidence angle is important. As was noted in the discussion of 
Bhattacharyya distances, the steepest incidence angle (FQ4) performed better than 
the shallower angles (FQ5 and FQ17). Finally, the more images averaged together or 
otherwise included in the classification, the better the result.

From the perspective of high-resolution remote sensing, this study showed that 
polarimetric synthetic-aperture radar can be a useful tool as long as the data processing 
focuses on maintaining the high-resolution aspect of the imagery. Any SAR imagery 
must be speckle reduced to be statistically useful. Choice of an appropriate speckle 
filter algorithm is critical, and must be one that is adaptive and edge preserving. The 
improved Lee sigma filter used here proved appropriate. The effect of speckle was 
further reduced by multitemporal and multiangle averaging. Through these processes, 
this study showed that relatively small patches of unique vegetation can be extracted 
from polarimetric SAR imagery.

6.4.2 I nfrastructure

Human-built features in a SAR image are often very difficult to identify. Sharp edges 
and features smaller than one SAR pixel in size are often blurred or filtered out 
in speckle-reduction processing. However, by using the higher resolution modes of 
SAR systems, processed appropriately, human-built infrastructure may be located 
and identified.

There are two distinct types of features that are discernable in SAR imagery: 
discrete scatterers such as power poles, fence posts, and other objects that are good 
radar reflectors, and hard-edged or linear features such as large buildings or roads.

(c) ketabton.com: The Digital Library



140 High Spatial Resolution Remote Sensing

6.4.2.1  Discrete Scatterers: Power Lines, Fence Lines, and Wind Turbines
Objects smaller than the size of a SAR pixel may be imaged successfully if their 
backscatter is much stronger than that of the distributed scatter from the natural 
environment surrounding them. RADARSAT-2 fine quad-polarization imagery over 
grasslands in the Inner Mongolia Autonomous Region, China, illustrates this concept.

Figure 6.4 shows a small area of grassland near the town of Siziwang, Inner 
Mongolia, China, imaged twice on October 24, 2016. The ascending (satellite 
moving NNW) and descending (satellite moving SSW) images show many features 
in common, but also illustrate a significant difficulty with imaging linear features. 
The circles numbered 1 locate wind turbines. As tall cylinders, they appear equally 
well both ascending and descending, in double-bounce and volume scattering. They 
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FIGURE 6.4  RADARSAT-2 fine quad-polarization imagery near Siziwang, China, October 
24, 2016, shown in a Yamaguchi decomposition. (a), (c), and (e) are descending images; (b), 
(d), and (f) are ascending images. (a) and (b) show double-bounce scattering, (c) and (d) show 
volume scattering, (e) and (f) surface scattering. The numbers refer to image features described 
in the text.
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do not appear in the surface scattering images. The circle labeled 2 encloses a group 
of buildings. Their walls are oriented parallel or perpendicular to the ascending 
direction of the satellite, and hence appear as double-bounce scatterers. However, 
they are at an oblique angle to the descending direction, and therefore the double 
bounce causes a change in polarization from vertical to horizontal and vice versa, and 
that change is interpreted as volume scattering. The arrows labeled 3 point to power 
lines. As linear features, they appear only when they are parallel to the satellite’s path. 
They are imaged as double-bounce scatterers. The most likely mechanism is that 
there is a bounce off the relatively flat ground that hits the power line and is reflected 
back to the satellite. The reverse path is of course possible too, from the wire to the 
ground to the satellite. In the ascending images, the power line is imaged more by its 
supporting poles than by the wire itself. These poles are also weakly visible in the 
descending image. Arrow 4 points to a field enclosed by a wire fence. The field was 
prepared for crops and was tilled in the direction of its longer side. Accordingly, in 
the ascending image, it appears to be a distributed double-bounce scatterer, but in the 
descending image it is a volume scatterer.

The arrow labeled 6 indicates a wire fence line, imaged in the same way as the 
power lines. The arrow labeled 5 points to an area of animal pens that are enclosed 
by wire fencing. As with the fence indicated by arrow 6, these fences are only visible 
as double-bounce objects where they are parallel to the flight direction of the satellite.

6.4.2.2  Distributed Scatterers: Roads and Well Pads
Some man-made features in SAR imagery are not characterized by discrete or 
dominant scatterers, but still contain fine detail and sharp edges. These sorts of 
features may be seen in RADARSAT-2 imagery of an oilfield near Cold Lake, 
Alberta, Canada (Brown et al. 2015). These images show some well pads (graveled 
areas surrounding producing oil wells) and the roads connecting them.

In this test, a stack of ultrafine (2 m resolution) HH polarization images acquired 
from 2011 to 2013 was used. A RapidEye image of the area is shown in Figure 6.5a. 
Different ways of image preparation were tested to assess which produced the most 
accurate random forest classification. Treating the image stack as 32 independent 
channels with no speckle reduction, or performing a minimum noise fraction 
transform on the image stack, performed better than temporally averaged imagery. 
Results from the unfiltered image stack are shown in Figure 6.5b.

Roads and well pads are clearly visible in the classified SAR image. A road, indicated 
by the red arrow, is clearly delineated, but is misidentified as a water feature. An 
unused well pad, identified by the black arrow, is correctly identified as a grassy area, 
while a well pad in use (magenta arrow), while clearly separated from the surrounding 
vegetation, is classified into a mixture of exposed land, urban, and grass. The overall 
classification accuracy of this imagery was only 37%, showing that, although this 
high-resolution imagery preserves the boundaries of man-made features, its single HH 
polarization is not very effective in classifying different types of vegetation.

In a similar region near Slave Lake, Alberta, Canada, imagery was acquired 
in ultrafine HH and HV and fine quad-polarization modes (Henley et al. 2016). A 
RapidEye image of the area is shown in Figure 6.5c and an orthophoto in Figure 6.5d. 
The ultrafine imagery has high spatial resolution (∼2 m), but only one real-valued SAR 
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FIGURE 6.5  (a) RapidEye true color image of well pads and roads near Cold Lake, 
Alberta, Canada. (b) RADARSAT-2 ultrafine classified averaged image of the same 
area. (From Brown et al. 2015. MARA: Multi-Sensor Assessment of Reclaimed Areas. 
Milestone 2 Report. ASL Environmental Sciences Inc. for the Canadian Space Agency 
under Contract No. 9F043-130644-008. Sidney, BC, Canada, Fig 5-21). (c) Roads and a 
well pad near Slave Lake, Alberta, Canada, as seen by RapidEye, (d) aerial photography, 
and (e)–(g) three different beam modes of RADARSAT-2. (From Henley et al. 2016. 
MARA: Multi-Sensor Assessment of Reclaimed Areas. Final Report. ASL Environmental 
Sciences Inc. for the Canadian Space Agency under Contract No. 9F043-130644-008. 
Sidney, BC, Canada, Fig 5-3).
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channel, while the quad-polarization imagery has lower resolution (∼7 m), but with 
four complex channels of SAR information, allowing an assessment of the trade-offs 
between the two types of SAR imagery. The ultrafine imagery was speckle filtered 
using an enhanced Frost filter, and the quad-polarization imagery with a Lee sigma 
filter. A comparison of classification results from these modes is shown in Figure 6.5e 
through g. The orthophoto was acquired some time before the other images, and the 
trees in the area identified as “Forest Activity” were cut down and removed before the 
other images were acquired. In all three SAR images, the road and its corridor are 
delineated, although in the coarser resolution of the quad-polarization image the road 
itself appears to be discontinuous. As was seen in the HH image of Figure 6.5b, the 
HH image here classifies the road surface as water. This misclassification is not present 
in either the HV or the quad-polarization image. The well pad in the left center of the 
image is classified in the quad-polarization image as being exposed land with a grassy 
border and a wetland tree or built-up structure in the center. With the exception of the 
tree class, this classification is correct. Neither of the single-polarization images classify 
the well pad correctly. In general, the quad-polarization classification is smoother 
and less speckled than the single-polarization results, and does a much better job of 
separating coniferous from deciduous forest. In the HV image, however, all three SAR 
classifications overestimate the amount of wetland vegetation.

In summary, the ultrafine imagery is better at delineating man-made features, but 
the quad-polarization imagery is better at identifying the content of features, both 
man-made and natural.

6.5  CONCLUDING OBSERVATIONS

Synthetic-aperture radar imagery does have the capability of useful high-resolution 
monitoring of the Earth’s surface. Its all-weather day/night imaging ability is a 
significant advantage over visible imagery in conducting consistent environmental 
monitoring programs. However, the presence of speckle in the imagery requires 
careful processing in order not to decrease the resolution of the imagery.

There are two significant and separate issues that are addressed by SAR imagery: 
the delineation of features and the identification of the content of the features. For 
persistent features in imagery, such as man-made structures or alterations to the 
landscape, high-resolution delineation is relatively easy and reliable and may usually 
be done reliably with single-channel SAR imagery. For natural landscape features, 
acquiring imagery in more than one polarimetric channel significantly improves the 
accuracy of the identification of the content of these features. However, acquiring on 
multiple channels implies a reduction in spatial resolution. Smaller features may not 
be imaged at all, but larger features will be imaged and identified more reliably. With 
suitable speckle filtering, edges between features will be maintained.
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7 Structure from Motion 
Techniques for 
Estimating the Volume 
of Wood Chips

Travis L. Howell, Kunwar K. Singh, 
and Lindsey Smart

7.1  INTRODUCTION

Various versions of unmanned aerial systems (UASs) have existed, but until 
recently, they have been too expensive or incapable of acquiring useful remotely 
sensed data without requiring extensive prior knowledge (Zhou and Zang 2007). 
Commercial and research applications of UASs have recently gained momentum 
due to technological advancements that have reduced costs and increased efficiency. 
UASs’ incredible potential is now being realized due to technological advances like 
battery-integrated power management, lightweight brushless rotors, and miniature 
high-resolution digital cameras. As a result of these advancements, common UAS 
applications have emerged that include coverage analysis for cellular networks, 
timber harvest auditing, natural disaster inspection, hydrology management, 
archaeological surveys, wetland mapping, and vegetation monitoring (Berni et al. 
2009; Breckenridge et al. 2011; Chiabrando et al. 2009; Goddemeier et al. 2010; 
Themistocleous et al. 2015; Wallace et al. 2012). These studies use image matching 
and photogrammetric techniques that allow for the generation of high-density point 
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clouds from the very-high-resolution photos collected by UASs (Wallace et al. 2012). 
Initially, data are acquired at a suitable altitude and angle (oblique and/or nadir), 
with an appropriate percent of overlap to seamlessly stitch together to create a high-
resolution 3D point cloud (Dandois et al. 2015). Then, structure from motion (SfM) 
programs are used to generate, view, and manipulate high-resolution point clouds 
and orthophotos that can be spatially referenced to centimeter-level accuracy, if 
ground control points (GCPs) are available. SfM programs initially create a sparse 
point cloud using the manual marking of GCPs to generate orthomosaics and a 
rectified dense point cloud.

SfM is a combination of photography and LiDAR techniques (Higgins 2016), 
which is also referred to as photo detection and ranging (PhoDAR). Compared to 
costly data collection and processing of LiDAR data, the SfM technique is capable 
of producing data with similar accuracies but at much lower costs. LiDAR remote 
sensing uses differences in laser return times to create a 3D point cloud representation 
of the Earth’s surface, while the SfM follows principles of photogrammetry and uses 
software that creates 3D point clouds by processing high-resolution imagery. Natural 
resource applications of SfM include, but are not limited to, site inspection, plant 
species identification, vegetation height models, timber harvest auditing, hydrology 
management, and prescribed or wild fire reconnaissance (Gates 2015). The key to 
the accuracy and success of SfM are images with a high percentage of overlapping 
images. Software applications stitch overlapping images by matching known objects 
to generate 3D point clouds, orthophotos, and mosaics. SfM generates a point derived 
by each pixel within the photos, and therefore the point density directly reflects the 
spatial resolution of the collected photos. SfM has adopted and improved upon 
traditional stereophotogrammetry principles.

The quality of SfM data depends on the type of equipment, for example, the 
use of a consumer- versus professional-grade camera. Consumer UASs include 
platforms similar to DJI Phantoms, wherein the platform acquisition cost is below 
$1,600 but the camera cannot be interchanged with another sensor. On the other 
hand, professional-grade UAS platforms cost on average more than $4,000, but come 
with interchangeable camera/sensor capabilities, including better global positioning 
system (GPS) equipment and hovering accuracy. Ultimately, all variables depend on 
the objectives of a project and the required accuracy for the intended outcomes. High-
definition sensors (i.e., digital cameras), capable of collecting data in visible, infrared, 
and thermal portions of the electromagnetic spectrum, can be attached beneath a UAS 
platform to gather real-time data. For example, Wallace et al. (2012) developed a low-
cost UAS-LiDAR system and an accompanying workflow to produce 3D point clouds. 
They used a modified processing workflow that included a trajectory-determining 
algorithm for fusing observations from a GPS receiver, an inertial measurement unit, 
and a high-definition video camera. In order to mount a sensor to a UAS, the device 
would need to be assisted with an appropriate gimbal and a suitable battery source for 
seamless data acquisition. von Bueren et al. (2015) deployed and compared data from 
four different cameras, including a high-resolution spectrometer using two different 
UASs to monitor ryegrass pastures. While UAS hardware is becoming both easy to 
use and cost efficient, pragmatic applications of UASs, such as volume of wood chips, 
need to be explored.
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Wood chips are used in the production of medium-density fiberboard (MDF), 
which includes a wide range of sustainable forest products such as plywood, lumber, 
and panels. The volume of chips that enter a facility at the MDF plant is correlated with 
current and future production of MDF products. This requires an accurate estimate of 
the chip volume at the start of each month that allows a facility to calculate the existing 
inventory and make accurate manufacturing decisions, including those related to 
personnel, resources, and profitability. Current survey methods rely upon third-party 
ground surveyors. Surveyors gather data on the chip pile at defined intervals, using a 
GPS and volumetric surveying equipment to recreate the pile in computer software 
for estimating the pile volume. Typically, it takes ground surveyors more than an hour 
to collect the needed data, and another hour to process the measurements digitally to 
estimate a final volume. Application of UASs may help overcome these constraints 
in estimating the volume of wood chips.

The objective of this study is to examine the use of a consumer-grade DJI Phantom 
3 Professional quadcopter for estimating wood chip volume. We collected UAS photos 
from multiple positions and then analyzed them using various SfM programs. From 
this, we outline a workflow for generating reliable estimates of wood chip volume. 
Since the ground surveyors are contract employees and prohibited from revealing 
specifics, the exact time and cost for the ground survey and estimation of wood chip 
volume is unknown for this study.

7.2  METHODS

7.2.1 S tudy Area

The wood chip pile examined in this study is located on an ARAUCO MDF plant 
(a private enterprise) in Moncure, Chatham County, North Carolina (Figure 7.1). 
Transfer trucks arrive at the plant daily to empty their more than 25 tons of cargo 
(both hardwood and softwood chips) for refinement into MDF board. Chips are 
unloaded via a hydraulic lift, and transported into an appropriate storage bay for 
categorization using an overhead conveyor belt. At the time of this study, there were 
four bays for the separation of hardwood and softwood chips.

7.2.2 U nmanned Aerial Systems Logistics

This study examined the use of a consumer-grade DJI Phantom 3 Professional 
quadcopter for photo acquisition of chip volume. The consumer UAS was equipped 
with a Sony Exmor RGB 12.4 megapixel camera with a 94° field of view. The focal 
length of this camera is 2.8 mm with an ISO of 100–1600. The quadcopter was 
flown at a speed of 4.7 mph. Shutter speeds can range from 8 seconds to 1/8000 
of a second. In this study, we used a shutter speed of 1/8000 of a second. Each 
imagery contained 4000 × 3000 pixels and was acquired in JPEG format. The DJI 
Phantom 3 has an integrated camera and records the spatial coordinates of each photo 
automatically in the exchangeable image file format. The average viable flying time 
per battery is around 18 minutes, with a horizontal range limited by Federal Aviation 
Administration (FAA) line of sight regulations and a maximum legal altitude of 400 
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feet above ground level (AGL). The autonomous flight Map Pilot application by Maps 
Made Easy was used to capture nadir images. The Map Pilot application is one of the 
few that will allow for specific user customization regarding image overlap, battery 
management, photo capture, flight speed, and multibattery missions. The Phantom 3 
can fly over approximately 100 acres at maximum legal altitude using approximately 
80% forward and 70% side overlap.

7.2.3  Photo Acquisition

We collected UAS data once in August and once in September 2016. We collected 
aerial photos immediately after the ground surveyors finished their data collection 
(∼8:30 a.m.), to ensure consistency in the amount of wood chips (Figure 7.2). We 
did not acquire UAS data at the same time as the ground surveys, in order to 
eliminate any possibility of bias in the data. The UAS was controlled from two 
main positions that kept the pilot and visual observer out of the way of transfer 
trucks and moving equipment (Figure 7.3). Because the sun was still rising at this 
time in the morning, the western side of the wood chip pile experienced shadow 
effects during the second survey. Figure 7.4 shows the area of the chip pile that 
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FIGURE 7.1  Study site with wood chip piles and hydraulic lift station at ARAUCO medium-
density fiberboard plant in Moncure, North Carolina.
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was affected by shadows from the low sun angle in September. The inventory day 
in August was slightly overcast, and the sun was not visible, resulting in imagery 
without shadowing effects.

Prior to each survey, we required an average setup time of less than 5 minutes to 
visually inspect the aircraft, perform a hardware check on the DJI system, calibrate 
the compass, and designate the GPS return to home point location (within the DJI GO 
application). After initial setup, the next step was to acquire photos using the Map 
Pilot application by Maps Made Easy. This autonomous flight software was used to 
generate a specific flight plan for the August and September surveys in order to have 
unique nadir capture locations. The percentage of overlap and the flying altitude 
were consistently 80% and 130 feet AGL, respectively. At this altitude, there were no 
physical obstructions, and the resulting ground surface resolution was approximately 
0.70 inches. Users can customize the Map Pilot application on an iOS tablet or smart 
phone, with or without the aid of cellular service or Wi-Fi. At present, the Map Pilot 
app is only available through Apple Inc. products; therefore, we used the iPad mini 
tablet for visualizing real-time video during UAS operations. In this case, we used a 
smart phone with a personal hot spot, which enabled background satellite imaging to 
aid in flight line creation on the iPad mini. The percent overlap in nadir photography 
is critical to matching pixel values, and greater accuracy is possible from a higher 
percentage of overlap.

We used the autonomous flight software by Maps Made Easy to capture photos in 
August and September from the nadir position. The DJI GO application was operated 
to acquire photos of approximately 45-degree oblique in September (Figure 7.5). The 
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FIGURE 7.2  Wood chip pile topographic model produced by the ground survey crew for (a) 
August, and (b) September 2016.
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DJI Go flight application was operated in real time, with the UAS pilot controlling 
photo capture, platform altitude, and sensor angle. Obliques were acquired from all 
sides of the chip pile, at various percentages of overlap, since there is no way to 
control overlap in the DJI GO application. A 60% side-lap in oblique photos was 
desired because there were additional photos to add detail in areas the nadir sensor 
could not capture. Flying altitudes ranged from 0 to 100 feet AGL for capturing the 
oblique imagery. Total photo acquisition time from setup to breakdown of the DJI 
Phantom was approximately 20 minutes for each survey.

FIGURE 7.3  Mosaic generated using Agisoft PhotoScan of the study site, with an overlay of 
UAS pilot positions (star) and equipment traffic areas (thick line).
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7.2.4 U AS Imagery Processing

We analyzed each data set from the surveys using three different SfM programs: (1) 
Agisoft PhotoScan Pro, (2) Pix4Dmapper Pro, and (3) Maps Made Easy (Table 7.1). 
Agisoft PhotoScan Pro and Pix4Dmapper Pro are licensed desktop programs. They 
require users to upload, process, and edit the 3D point cloud on their own computer. 
Pix4D also permits license holders to use online image processing, but we did not 
investigate that option in this study. The Maps Made Easy online image processor is 
a pay as you go service that allows the user to specify which images to upload, and 
then cloud processing begins.

We preprocessed data prior to volume estimation using Agisoft PhotoScan Pro 
and Pix4Dmapper Pro to analyze the correct points within each dense point cloud. 

FIGURE 7.4  Westward shadow effect on the wood chip pile in the storage bay area of the 
study site.
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TABLE 7.1
SfM Program Costs

Cost Per Unit License

Agisoft PhotoScan Pro Pix4Dmapper Pro Maps Made Easy

Professional $3499.00 $3500.00a to $8700.00 $0.022 to $0.067/acre 
(pay-as-you-go-system)b

Student $549.00 $1990.00 —

a	 Desktop yearly license.
b	 https://www.mapsmadeeasy.com/pricing.

Area:
Distance:
Max speed:
Duration:
Batteries:
Imagery:
Points:
Storage
Altitude:
Resolution:

2.14 acres
0.85 km
9.0 mph
4 minutes 7 seconds
1
57
Free
0.28 GB
131 feet
0.7 inches/pixel

FIGURE 7.5  Map Pilot flight plan and a screenshot of the real-time unmanned aerial system 
flight lines while using the application.
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For example, we masked the conveyor belt out of the 3D point clouds for accurately 
estimating the chip volume using nadir and oblique photos (Figure 7.6). We estimated 
wood chip volumes with the conveyor belt, using nadir photos for August and 
September surveys, and used nadir and oblique photos for the September survey. 
While estimating wood chip volume with the conveyor belt does not allow for the 
comparison of volumes between the UAS and ground surveyor, it helps to compare 
the performance of each SfM program. We also estimated wood chip volume without 
the conveyor belt to compare estimates generated from SfM programs (i.e., Agisoft 
PhotoScan Pro and Pix4Dmapper Pro) and ground-surveyed measurements. Maps 
Made Easy does not allow customization of the point cloud, and therefore we did not 
estimate volume. We repeated the entire process five times to eliminate biased results 
from each calculation. The average volume and standard error of the measurements 
were used for each method. Images of the woodchip pile that contained shadow 
changed the color of the woodchip pile but not the surface texture because such 
shadow did not affect the quality of surface models. Figure 7.7 represents a general 
SfM workflow.

Agisoft PhotoScan Pro has a simple graphical user interface (GUI) that allows 
users to select each step and the associated parameters. The workflow is quite simple, 
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FIGURE 7.6  3D point cloud of wood chip pile 1.1 (a) with the conveyor belt, (b) without the 
conveyor belt, and (c) a surface model of wood chip pile with the conveyor belt.

Photo alignment Build mesh and
dense cloud

Surface model
and orthophoto

generation

FIGURE 7.7  General structure for motion workflow.
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and can be batch processed after the initial setup. The final step involves exporting the 
desired results to the correct file directory. Within Agisoft PhotoScan Pro, we used 
high, medium, low, and the lowest quality parameters to determine the best setting 
for creating the digital surface model (DSM). The medium-quality DSM produced 
the most accurate representation of the chip pile surfaces in Agisoft PhotoScan Pro 
(Figure 7.8). The high-quality processing required a substantial time to stitch points 
that were considered noisy or above the reference plane. The low and lowest settings 
appeared to provide incorrect estimates. We also selected medium-quality parameters 
for creating the DSM within Pix4Dmapper Pro. The Pix4Dmapper Pro comes with 
a GUI and requires three main processing steps. Steps can be generated individually 
or batch processed together if selected. The initial phase includes the image capture 
locations overlaid on satellite imagery, which is helpful to display the data set and 
to check for photo inconsistencies. Pix4Dmapper Pro and Agisoft PhotoScan Pro 
allow users to customize the SfM parameters to generate a point cloud that contains 
the highest accuracy possible. The Maps Made Easy application provides systematic 
instructions on its webpage that require no prior image analysis experience because 
there is little customization of processing parameters. Once photos are uploaded and 
export parameters are selected, an email is sent to the user with the suggested time 
of completion, and the user is again notified via email when the process is completed.

7.3  RESULTS

Volume estimates varied across the applied SfM programs. The Pix4Dmapper Pro 
program produced the smallest standard errors in estimating wood chip volume, both 
with and without the conveyor belt, using nadir photos for August and September 
UAS surveys (128 and 26 m3; 83 and 14 m3, respectively) (Table 7.2). Maps Made 
Easy produced slightly higher volume estimates with the conveyor belt for August and 
September (3.5% and 2%, respectively), compared to the Pix4Dmapper Pro program, 
but at the cost of the highest standard errors (380 and 523 m3), whereas Agisoft 
PhotoScan Pro produced volume estimates approximately 19% higher (Table 7.2). The 
three SfM programs produced the highest volume estimates and standard errors using 
a combination of nadir and oblique photos for September (Table 7.3). These volume 
estimates were far from those of ground-based survey methods. When we removed 
the conveyor belt from the 3D point cloud, we observed volume estimates similar to 

High quality DSM Medium quality DSM Low quality DSM Lowest quality DSM

FIGURE 7.8  Agisoft PhotoScan Pro dense point cloud quality setting comparison for DSM 
generation.
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those of the ground survey, while standard errors were the lowest (Table 7.4). The 
Pix4Dmapper Pro program produced the lowest standard error (14 m3), followed by the 
Agisoft PhotoScan Pro programs (27 m3 without the conveyor belt). Volume estimates 
from these two SfM programs were 8% to 12% lower compared to the ground survey 
(Table 7.4). We found that the standard error of volume estimates decreased as the 
number of photos used in the image processing increased. The SfM programs that 
produced the lowest average standard error used the highest number of images, such 
as the Pix4Dmapper Pro program.

7.4  DISCUSSION

The UAS allowed for seamless data collection amid heavy equipment operating around 
the chip pile. Since there is minimal site disturbance through the UAS data collection 
procedure, UAS can be used on a regular basis for monitoring wood chip pile volumes 
in order to update inventory. The Pix4Dmapper Pro program outperformed the other 
two SfM programs, with the lowest standard error and volume estimates, similar to 
those of the ground survey. The Maps Made Easy application was much simpler and 
more user friendly. It is important to keep in mind that the data collected via ground 

TABLE 7.2
Estimates of Wood Chip Pile Volume with Conveyor Belt from Nadir 
Photos, Using Three Structure for Motion Programs for August and 
September

August September

Volume (m3) Standard Error Volume (m3) Standard Error

Ground Survey 11,743.1 — 14,876.5 —

Agisoft PhotoScan 
Pro

15,720.7 147.8 20,128.7 57.6

Pix4Dmapper Pro 13,252.8 128.1 19,468.8 25.7

Maps Made Easy 13,708.1 380.0 19,859.5 522.5

TABLE 7.3
Estimates of Wood Chip Pile Volume with 
Conveyor Belt from Nadir Photos for September, 
Using Three Structure for Motion Programs

September

Volume (m3) Standard Error

Ground Survey 14,876.5 —

Agisoft PhotoScan Pro 20,362.6 113.4

Pix4Dmapper Pro 19,459.4 192.6

Maps Made Easy 20,750.4 668.3
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survey is only an estimation and could be biased. Besides generating and saving 
multiple volumes at once, SfM programs provide high-resolution orthophotos and 
3D interactive models that could be used for additional purposes. By-products, such 
as the mosaic generated by SfM techniques when estimating volumes, may help in 
inspecting conveyor belts and auditing infrastructure.

Photo acquisition should follow the procedure to minimize the shadow effect. 
While shadows in wood chip pile photos did not affect the quality of the DSM, 
they did affect the red, green, and blue (RGB) values of photos. UAS pilots should 
account for the clarity of the atmosphere, sun angle, wind speed, and changes in 
camera exposure to acquire usable photos in a timely manner. If these parameters 
are not addressed, the photos may be blurry or out of focus and unable to be stitched 
together. We successfully imported imagery collected by the DJI Phantom 3 Pro into 
multiple SfM programs to generate and view high-resolution 3D point clouds that 
were spatially referenced. SfM allows for the mapping of areas at resolutions that 
were previously not possible, and is a valuable aid to natural resource management. 
However, each program has its benefits and drawbacks, and should be used 
accordingly to maximize the objectives of a project. The Agisoft PhotoScan Pro 
application performs photogrammetric processing of digital images and generates 3D 
spatial data. This provides an easy and rapid calculation of volumes, but it is difficult 
to get exact results for large areas with specific boundaries. Tools that are used for 
volume delineation do not allow the user to select exact pixel locations, and can cause 
confusion if irregular or vast areas are to be calculated. The general workflow is quite 
simple, and photos can be batch processed after a quick setup. Generated mosaics are 
of high quality, with uniform color across the entire project area. The Pix4Dmapper 
Pro application uses three main processing steps that generate a simple workflow. 
It provides accurate clipping and volume extraction methods that allow the user to 
save and view multiple volume measurements at once. Another appealing feature 
that Pix4Dmapper Pro offers is the ability to save the entire workflow as a template; 
therefore, it can be easily loaded for a new project. This decreases the possibility of 

TABLE 7.4
Estimates of Wood Chip Pile Volume without Conveyor Belt from Nadir and 
Oblique Photos for August and September, Using the Agisoft PhotoScan Pro 
and Pix4Dmapper Pro

August September

Volume (m3) Standard Error Volume (m3) Standard Error

Ground Survey 11,743.10 — 14,876.50 —

Agisoft PhotoScan 
Pro

10,358.70 193.80 16,626.80 27.40

Pix4Dmapper Pro 10,769.00 83.00 16,231.50 13.80

Maps Made Easya — — — —

a	 Preprocessing, such as removal of unwanted 3D points, is not available in this program.
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error when selecting the SfM parameters, and allows for time efficiency with repeated 
image processing. A GCP identification and placement tool is constructed through an 
accurate and easy-to-follow interface.

The Maps Made Easy application operates through a system that requires the 
user to pay for the image processing, using a point scale associated with the amount 
and resolution quality of the photos. There is a direct correlation between resolution 
and suggested computing power; therefore, Maps Made Easy accounts for this input 
variable. The current version permits projects that are less than 250 points to be 
processed free of cost, to allow users to test the system and run sample areas before 
processing large data sets. Each chip pile data set did not exceed 250 points, and 
was able to be processed without cost. Maps Made Easy is the easiest method of 
processing because it requires very little user input and knowledge. Volume areas 
are delineated through a 2D interactive window, where the user selects volume 
boundaries via the generated mosaic. However, users do not have the ability to edit the 
point cloud, making volume calculations include all space below overhead features. 
Project deliverables are easily accessible to view and download in 2D and 3D formats.

SfM programs are able to account for minimal changes in topography. Desktop-
based programs, such as Agisoft PhotoScan Pro and Pix4Dmapper Pro, are optimal 
for acquiring and preprocessing data that include removal of 3D points of unwanted 
overhead features that may obstruct the view of the UAS camera. If the area surveyed 
does not have any overhead features, a program such as Maps Made Easy is another 
outlet at a low cost of operation. The front-end loader that is visible in the eastern 
side of the mosaic was able to operate continually when the UAS survey was being 
conducted (Figure 7.2), while this was not the case with the ground survey. Therefore, 
the UAS pilot was able to conduct inventory from a safe distance away from moving 
equipment compared to ground surveys, decreasing the possibility of an accident 
occurring during the UAS survey. The ability to provide a standard error, specifically 
tailored to each data set, with UAS measurements can offer additional data regarding 
the volume estimation in comparison with a typical ground survey method.

7.5  CONCLUSION

This study demonstrates that postprocessing of UAS imagery using multiple software 
approaches for estimating wood chip pile volume is repeatable and comparable to 
estimates produced by ground surveys. The point cloud generated through only nadir 
photos had a larger standard error when compared to those images gathered in nadir 
and oblique positions. Oblique photos captured the vertical texture of the pile in a 
way that the nadir sensor was unable to capture. Photos captured with a tilted sensor 
acquired at various altitudes and angles mapped different aspects and surfaces that 
were unseen in nadir photography (especially underneath the conveyor belt). We 
found that the standard error of the chip pile volume decreases as the number of 
photos used in the image processing increases. The data set with the highest number 
of images had the lowest average standard error. A direct comparison of known 
wood chip volumes to those estimated by SfM programs is needed to improve the 
accuracy of volume estimates. This will inform us of the bounds and errors of each 
used program, and their ability to successfully generate an accurate 3D point cloud. 
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Adding survey GCPs to tie the models to true geographic coordinates may increase 
the accuracy of estimated volumes and should be taken into consideration.

7.6  LIMITATIONS AND FUTURE RESEARCH

As per the FAA regulations, each UAS pilot has to have an FAA UAS license. They 
are typically bound to fly at 400 feet AGL or below, which limits the mappable area. If 
the UAS is piloted within 5 nautical miles of an airport, the pilot is required to notify 
the appropriate air traffic control tower to allow for increased situational awareness 
of local manned aircraft. The pilot is also limited by visual line of sight regulations 
that instruct the pilot or associated observers to physically keep visual contact with a 
UAS platform at all times. This can restrict the area flown when operated in forested 
areas or between tall buildings, where the crew is unable to keep unobstructed view 
of a UAS. While these regulations are set for safety reasons, they limit the capabilities 
of UASs because current platforms have the ability to map at greater altitudes due to 
high-resolution integrated cameras. UAS pilots also have to keep a very close eye on 
the geographic location of the flights because any slight change in weather can affect 
the quality of data. Most platforms are not waterproof, but can fly in considerable 
amounts of wind. High winds do require more rotor thrust and decrease the overall 
time in the air due to battery consumption. While these limitations restrict usability of 
UASs in large area applications, cost effectiveness is one of the key drivers that would 
open doors for UASs in both research and commercial applications (Canis 2015).

Civil and commercial applications include aerial reconnaissance, search and 
rescue, survey of forest, timber production, crop production, disaster damage 
estimation, disaster management, agricultural activities, telecommunications, oil 
and gas exploration, and geophysical surveys (Zhang et al. 2016). The ease of UAS 
deployment will allow repeated mapping at a scale that was previously time and cost 
consuming; for example, frequent forest survey for the detection of windblown and 
nonproductive areas (Cunliffe et al. 2016; Nasi et al. 2015). Use of SfM techniques 
will drastically change how timber can be inventoried for modeling timber height. 
Since repeated surveys and rapid response using UASs are user friendly, it can be used 
to quickly access disaster areas for damage assessments and management using 3D 
mapping. With the aid of high-resolution cameras and brushless rotors, visualizations 
of potentially hazardous sites will increase site awareness without having to place 
humans in contact with harmful substances (Yuan et al. 2015). RGB and infrared-
equipped UAS platforms are suitable for real-time data collection on prescribed or 
wildfire situations. Lightweight and portable UASs can be carried by ground crews 
and quickly deployed if aerial views are needed to monitor fire movement and 
direction.

The applicability of UASs due to low operational and material costs, control of 
spatial and temporal resolution, and the absence of risk to crews will also open doors 
for both applied and developmental research (Tang and Shao 2015). For example, 
because of UASs’ flexibility in the temporal dimensions of data acquisition, UASs 
can be used to study phenological variability due to climate change at broad scales. 
While data collection from aircraft is costly, it overcomes the limitations of traditional 
satellite sensors where data acquisition is bounded by the orbital characteristics of 
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the platform (Weiss and Baret 2017). Therefore, the capabilities of UASs can help 
in planning flights very close to phenological stages important for detection of plant 
stress, impacts of climate change, or preharvest characterization (Burkart et  al. 
2017). These UAS flights can be conducted using a variety of sensors, such as RGB, 
multispectral, near-infrared, hyperspectral, or LiDAR. In addition, such portable 
sensors may open doors to new research directions, such as system calibration, sensor 
development, data registration, and data fusion with onboard cameras.
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8 A Workflow to Quantify 
the Carbon Storage 
in Urban Trees Using 
Multispectral ALS Data

Xinqu Chen and Jonathan Li

8.1  INTRODUCTION

With the continuing growth of the global population, urbanization has become an 
inevitable trend. Urban expansion accelerates with the advancements of socioeconomic 
activities and population growth. Today, more than 50% of the global population 
resides in cities, and by 2050 urban areas will hold up to another 2.5 billion people, 
equivalent to 66% of the global population (United Nations, 2014). Intensive urban 
developments and economic activities increase energy consumption and result in 
greenhouse gas emissions (Corfee-Morlot et al., 2009; Satterthwaite, 2009; Dodman 
et al., 2012). As urban land covers expand, direct losses of vegetation cover also occur. 
Without vegetation covers acting as the largest carbon sink, deforestation becomes 
the second largest contributor of greenhouse gases (Johnson, 2009).
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Increased awareness of high energy use and urban heat islands has led urban 
municipalities to put conservation efforts into implementing strategies that can protect 
the urban climate and energy use at the city scale. Urban vegetation has drawn the 
direct attention of city planners and policy makers, considering the importance of trees 
in in urban climate modification and energy conservation. In the context of Canada’s 
climate, annual cooling energy use can be reduced 10%–19% by planting vegetation 
proximate to the houses and increasing the albedo of urban surfaces (Xu et al., 2012; 
Sawka et al., 2013). City wide, urban trees reduce air pollution through direct dry 
deposition, and also influence the cooling of the ambient temperature, which slows 
smog formation. Vegetation contributes the largest proportion of carbon storage, which 
in turn reduces the rate of climate warming and urban heat islands (Davies et al., 
2011). Urban trees both sequester CO2 and store excess carbon in biomass (71% of 
total urban carbon storage), which significantly influences environmental quality and 
human health (Donovan & Butry, 2010; Roy et al., 2012). Preserving carbon storage 
and improving green space infrastructure in urban areas has significant environmental 
benefits (van den Berg et al., 2015). Consequently, estimation and monitoring of urban 
carbon stocks and green space becomes important indeed. In the literature, the carbon 
content stored in individual trees can be assessed through aboveground dry-weight 
biomass calculation using allometric equations. Dendrometric parameters, such 
as individual tree height or crown diameters, are generally used in the allometric 
equations to derive diameter at breast height (DBH). Dry biomass is then calculated 
using the allometric model, with DBH as the input, and further transformed to carbon 
storage with a conversion rate around 0.5 (Lieth, 1963; Whittaker & Likens, 1973).

With the development of LiDAR technology, airborne laser scanning (ALS) 
and very-high-resolution multispectral imagery have proven to be promising tools 
for the derivation of dendrometric parameters. Previous studies have successfully 
extracted detailed vegetation covers from very-high-resolution multispectral data, 
such as QuickBird, and applied it to the ALS-derived canopy height model (CHM) 
for dendrometric measurements and biomass estimation in both forestry and urban 
studies (Huang et al., 2013; Schreyer et al., 2014; Pasher et al., 2014; Raciti et al., 2014; 
Sousa et al., 2015). Raciti et al. (2014) estimated carbon storage in urban trees for the 
City of Boston by developing an ALS-height-only regression model to estimate carbon 
storage across the city. A total of 404 accurately segmented tree crowns from the 
normalized digital surface model (nDSM) were split into 284 samples for model fitting 
and 120 samples for validation. The reason for using a simple linear regression of tree 
biomass and height was to avoid the influence of crown segmentation results. An R2 
of 0.79 was found between field-estimated biomass and model-predicted biomass. 
Schreyer et al. (2014) estimated the carbon storage in urban trees, and its distribution 
was extrapolated to the entire city of Berlin in terms of land use types. This study 
did not propose a region-specific allometric model for the study area, but applied the 
ALS-DBH model developed by Zhao et al. (2009) and a carbon allometric model using 
DBH as the only independent variable. A total of 87% of the modeled DBH showed 
an underestimation, which was further calibrated by a weighted arithmetic average 
DBH. The carbon storage in urban trees was calculated as half of the model-based 
biomass, regardless of the genus. Meanwhile, the crown base height was assumed to 
be half of the ALS-derived height, and the crown width was calculated in 16 directions 
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with a series of criteria, instead of the conventional estimation of crown width in four 
directions as proposed by Popescu et al. (2003) or as used by Xu et al. (2014).

With the emerging multispectral ALS technology, it became possible to obtain both 
the range and multiple reflectance data from a single data source. The first commercial 
multispectral ALS system, Optech Titan, released by Teledyne Optech Inc., has 
integrated three laser channels at wavelengths of 532, 1064, and 1550 nm, respectively. 
These three channels produce independent scan lines by sending pulses with separate 
forward angles (the near-infrared [NIR] channel has a 0° forward angle; the short-wave 
infrared [SWIR] channel has a 3.5° forward angle; the green channel has a 7.0° forward 
angle). This emerging ALS system showed great potential in land cover mapping 
without the aid of passive multispectral images (Bakuła, 2015; Wichmann et al., 2015). 
This active laser system can largely avoid those factors commonly associated with 
passive optical sensors, such as weather conditions and shadow effects. However, the 
potential of ALS intensity currently remains undervalued, and the applications of this 
newly released system are at an early stage of development.

Given the current state of development of tree inventory with typical ALS data, 
this chapter aims to explore the feasibility of multispectral ALS range and intensity 
data in carbon storage estimation. To achieve this, vegetation covers are first classified 
based on multispectral ALS range and intensity data by applying a support vector 
machine (SVM) classifier. Second, dendrometric parameters such as tree height and 
crown diameter are derived in order to establish an allometric relationship between 
ALS-derived measurements (tree height and crown diameter) and the field-measured 
parameter (DBH) through regression modeling. Last, this study quantifies the carbon 
storage in urban trees for the Town of Whitchurch-Stouffville, Ontario, Canada.

8.2  STUDY AREA AND DATA SOURCES

The study area is located in the Town of Whitchurch-Stouffville, Ontario, Canada, 
which is a municipality in the Greater Toronto Area (Figure 8.1). The area is 
characterized by a typical residential landscape that contains two water bodies 
(Musselman Lake and Windsor Lake) and three land cover types: residential area, 
open area (grassland and woody area), and park and recreation (DMTI Spatial, 2015). 
The residential area consists of single detached dwellings with mature street and 
backyard trees planted at least 10 years ago (Google Earth, 2004). The tree species 
in the study area include deciduous trees such as maple, ash, oak, elm, black cherry, 
basswood, and conifers (Brook McIlroy Inc., 2002).

Two multispectral ALS images were acquired by the Teledyne Optech Titan 
multispectral ALS system on July 2, 2015. The multispectral ALS data sets had two 
flight lines that covered and intersected at the study area. The flight altitudes were above 
1000 m with a pulse frequency of 100 kHz for each channel, yielding an average point 
spacing of 0.8 m per point and an average point density of 7.7 point/m2 (Table 8.1).

Field data were collected on February 9, 2016 (Figure 8.2). A total of 40 trees 
were sampled in the field that contained four attributes (i.e. height, DBH, crown 
diameter, and biomass) for each single tree. Tree heights were measured in meters 
using a hypsometer. DBH was measured in centimeters with a diameter tape. Since 
the field measurement was conducted during the leaf-off season, the third attribute, 
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crown diameter, was measured using aerial photos from Google Earth. The crown 
diameter, in meters, is defined as the mean of the maximum crown diameter and 
the diameter measured at the direction perpendicular to the maximum, using the 
Ruler tool in Google Earth. The fourth attribute, single-tree carbon storage, is 
estimated by plugging the field-measured DBH and tree height into the Canadian 
national aboveground all-species biomass equations (Lambert et  al., 2005). 
The equations calculate the dry aboveground biomass by relating tree height and 
DBH to each biomass component, such as wood, bark, and foliage, with a uniform 

relationship: Biomass DBH= β β β
1

2 3H ; where β1, β2, and β3 are the parameters 
generated for the all-species group with different values according to the tree 

Canada

Kingston

Ontario

Whitchurch-
Stouffville

Land
covers

Study area

Data provider: DMTI spatial Inc.

FIGURE 8.1  Map of study area.

TABLE 8.1
Summary of the Multispectral Titan ALS Data Set

Characteristic Value

Laser channels 532 nm; 1064 nm; 1550 nm

Field of view (FOV) 30°

Pulse repetition frequency (PRF) 100 kHz per channel; 300 kHz in total

Flight height Strip 1: 1030 m
Strip 2: 1043 m

Flight speed 69–70 m/s

Flight date July 2, 2015

Number of ALS strips 2

Number of returns 4

Number of points Channel (532 nm): 3,665,956
Channel (1064 nm): 3,692,211
Channel (1550 nm): 3,072,895

Average point density 7.7 points/m2 in total
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compartments. The carbon storage in sampled trees was then defined as half of the 
sum of the dry aboveground biomass in each compartment.

8.3  METHODOLOGY

The methodology of this study consisted of four parts: ALS data processing, 
vegetation isolation, dendrometric parameter extraction, and carbon storage modeling 
(Figure 8.3).

8.3.1  ALS Data Processing

After removing outliers and rectifying the ALS intensity values, point clouds from 
two flight strips were merged together; in total, three ALS point clouds were acquired 
by the Titan laser channels. Then each point cloud was rasterized into an intensity 
image with a ground resolution of 1 m. The pixel size was selected according to the 
point spacing of the data set. By selecting the pixel size close to the point spacing, 
most of the pixels can contain at least one point, and the vertical distribution of the 
points can be largely highlighted. In this way, points were grouped into 1 m grids and 
the pixel values were assigned by the mean intensity of the points within the grid. 
For the grids that had no point filled in, the grid values were interpolated linearly by 
searching the neighbors. Here, three mean intensity raster data were generated for 
channels 532, 1064, and 1550 nm, respectively.

Besides the generation of ALS intensity images, a digital surface model (DSM) 
and a digital terrain model (DTM) were created from the raw ALS by a ground-point 
filtering and rasterization process. The whole ALS data set was then classified into 
ground and nonground classes. DTM raster data were generated by rasterizing all 
the ground points into 1 m grids, based on the linear interpolation method. The DSM 
was generated in a similar way by using the nonground class, and the maximum 

FIGURE 8.2  Location of 40 sampled trees in the field.
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height within the grid was assigned to the pixel values. In this way, the points that 
represented the treetops could be largely reserved. Finally, DSM raster data were 
acquired by subtracting the DTM from the DSM.

8.3.2  Vegetation Isolation

Besides the multispectral intensity and nDSM data described in Section 8.3.1, two 
additional indices were derived as follows:

Merged
multispectral

ALS data

1-m DSM

1-m nDSM
1-m

raster
green band

Classification by SVM classifier

Accuracy assessment

House Road Tree

Masking

Local maxima filtering and
Marker-controlled watershed

segmentation

Crown diameter
(CD)

Tree height
(H)

Validation with
Google Earth

photos

ALS-derived DBH

ALS-DBH regression modelling
*DBHfield-measured = a*CDALS-derived + b*HALS-derived + C

Diameter at breast height

1-m tree-isolated nDSM
1-m first-return

ALS maximum intensity
(Greenmax + NIRmax + SWIRmax)

Allometric biomass equation by Lambert et al. (2005)

ALS-derived carbon in single trees

Validation with field
measurements

*DBH =

Validation with
field-measured DBH

Validation with
field-estimated carbon

Grass Open area

1-m
raster

NIR band

1-m
raster

SWIR band

Data processing

Vegetation isolation

Dendrometric 
parameter estimation

with ALS

Urban carbon/biomass modeling

1-m DTM Preprocessing Preprocessing Preprocessing

Green
ALS data

NIR
ALS data

SWIR
ALS data

FIGURE 8.3  Workflow of the proposed methodology.
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pNDWI Green NIR

Green NIR

=
−
+

C C

C C 	
(8.1)

	
pNDVI NIR SWIR

NIR SWIR

=
−
+

C C

C C 	
(8.2)

where CGreen, CNIR, and CSWIR refer to the laser channels at 532, 1064, and 1550 nm, 
respectively.

By visually examining the pseudo normalized difference water index (pNDWI) and 
pseudo normalized difference vegetation index (pNDVI) (Figure 8.4), both the pNDVI 
and pNDWI showed good discrimination for artificial objects. These two indices can 
facilitate the manual selection of training samples and work as the ancillary data in the 
classification process. The contribution of these two indices to the overall classification 
accuracy was analyzed. A total of six input data, including (1) green channel intensity, 
(2) NIR channel intensity, (3) SWIR channel intensity, (4) nDSM, (5) pNDWI, and (6) 
pNDVI, were generated and input into the classification scheme.

Because the study area was characterized by a simple residential landscape, it 
could be grouped into six land cover types, including water, house, road, grass, tree, 
and open area. However, due to the bathymetry capability of the channel at 532 nm, 
water points in the study area tended to have irregular intensity that was induced 
by the interaction of laser points with both the water surface and the organic matter 
underneath. Hence, water bodies including Musselman Lake, Windsor Lake, and one 
small water region were masked out of the data set, resulting in only five land cover 
types being trained and classified in this study. Interpreting land cover types from 
ALS intensity was not as easy as from passive optical images. Certain land cover 
types, such as grass and open area, could be distinguished from only one or two 
intensity data and could hardly be identified from the rest.

An SVM classifier was selected to perform land cover classification with multispectral 
ALS-derived data due to the popularity of SVM in typical ALS-related classification 
studies, making the classification result of this study comparable to previous studies. 

pNDWI

(a) (b)

1

–1

pNDVI
1

–1

FIGURE 8.4  Examples of ALS-intensity-derived indices.
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The SVM classification was performed on three combinations of the input data, shown 
in Table 8.2. The selection of input data was mainly designed for showing the benefits of 
multispectral ALS in land cover classification (Selection 2) compared with typical ALS 
data (Selection 3). Meanwhile, Selection 1 was designed to examine the contribution of 
multispectral-intensity-derived indices in overall classification accuracy.

8.3.3 D endrometric Parameter Estimation

The tree-isolated nDSM was also referred to as the CHM, a model displaying tree 
positions by tree crowns in a top-down view and storing the height values in pixels. 
A 3 × 3 local maxima filter was first employed on the CHM to detect treetops. A 
pixel with the highest value among its eight neighbors was defined as the treetop. To 
eliminate the commission errors associated with the local maxima filtering and detect 
the true treetop pixels, the local maxima in the CHM were further filtered by the ALS 
intensity data. The ALS intensity values were dependent not only on the reflectivity 
of the object, but also on the range between the sensor and the object. A true treetop 
pixel would have both high intensity and height values. Under this assumption, the 
sum of  maximum intensity of first return is generated at 1 m for each channel. 
The clusters of local maxima in the CHM, which had more than 15 pixels together, 
were further extracted, and only the pixels that were also the local maxima in the 
maximum intensity layer were retained in the final treetop results. Previous studies 
relied on changing the window size and shape of the filter to refine the treetops (Chen 
et al., 2006; Zhao et al., 2009). These approaches were not suitable here because the 
CHM resolution (1 m) generated in this study was relatively coarse, so increasing the 
window size of the local maxima filter would result in excluding small tree crowns.

The marker-controlled watershed segmentation was applied to segment the CHM 
into individual tree crowns by defining the pre-detected treetops as the markers. In 
this way, every pre-detected treetop would have one closed segment. The performance 
of the segmentation in isolating tree crowns was evaluated by the absolute accuracy, 
calculated as

	
Absolute accuracytree isolation

total

= ,n

n
1 1

	
(8.3)

where n1,1 is the number of detected crown segments that have a one-to-one relationship 
to the ground truth; and ntotal is the number of tree crowns in the ground truth. Tree 

TABLE 8.2
Combinations of Input Data for SVM Classification

Combination

Selection 1 Green + NIR + SWIR + nDSM + pNDWI+ pNDVI

Selection 2 Green + NIR + SWIR + nDSM

Selection 3 NIR + nDSM
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height is defined as the average of the local maxima within each segment, and crown 
diameter is defined as the average of the maximum crown diameter passing through 
the center of the local maxima and the one measured at the perpendicular direction 
(Figure 8.5).

To evaluate the accuracy of the ALS-derived dendrometric parameters, the ALS-
derived tree height and crown diameter were compared with the field measurements. 
The crown segments generated from the ALS data were matched with the 40 field-
sampled trees, and the root-mean-square error (RMSE) and bias were calculated to 
compare the ALS-derived dendrometric parameters with field samples:

	
Bias

ALS field

=
−

=∑ i

n

i iX X

n
1

, ,

	

(8.4)

	
RMSE

ALS field

=
−
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n

i iX X

n
1
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(8.5)

	
RMSE%

RMSE

ALS

=
X 	

(8.6)

where n is the number of field samples, which equaled 40 trees in this study; X 
refers to the values of dendrometric parameters (height or crown diameter) measured 
either in the field or from the ALS data; and XALS  is the arithmetic mean of the 
ALS-derived measurements. Moreover, a linear regression model was fit to the ALS-
derived tree height and crown diameter to determine if there was a strong correlation 
between these two variables.

8.3.4 C arbon Storage Modeling

In order to predict the carbon storage in trees, a multiple linear regression model was 
developed empirically to fit the data, with the ALS-derived dendrometric parameters 
as the independent predictors and the field-measured DBH as the predicted variable. 

Treetop
Treetop

(a) (b)

FIGURE 8.5  Measurement of tree height and crown diameter: (a) location of the pixel with 
the maximum value within a tree crown; (b) illustration of the crown diameter measurement.
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The empirical equation derived from the ALS-DBH linear regression model has the 
form

	 DBHfield ALS ALS= ⋅ + ⋅ +a CD b H c 	 (8.7)

The 40 field-sampled trees were split into two data sets, with 20 trees used for model 
parameterization and the remaining 20 trees reserved for validation. To eliminate 
the influence of tree locations in model fitting, each 10 adjacent tree samples were 
grouped together under one sampling location, resulting in a total of four sampling 
groups. Six combinations of training and validation data sets were chosen by selecting 
two sampling locations out of four for model development and using the remaining 
two locations for validation. All six models were developed at a 0.05 significance 
level and were fitted through a cross-validation process. The parameters generated 
for each model were collected. The predictive power of the regression models and the 
performance were inspected by the coefficient of determination (R2), and the accuracy 
of the prediction was examined by the RMSE of the predicted parameters. Comparing 
the R2 and RMSE of the six ALS-DBH regression models, the one with a high R2 in 
the model fitting and a low RMSE in the validation was selected to predict DBH.

After selecting the ALS-DBH regression model, the ALS-estimated DBH and 
height were plugged into the Canadian national aboveground biomass equations 
proposed by Lambert et al. (2005) to estimate the carbon storage in trees. From 
Lambert et al. (2005), the set of equations based on DBH and height for all species 
was selected to calculate the biomass since no genus or species information was 
available in this study. The aboveground biomass was estimated as the sum of 
biomass in tree compartments (foliage, branch, wood, and bark). The carbon stored 
in trees was estimated as half of the total biomass. The carbon storage predicted by 
the ALS-derived parameters was compared with that estimated by the field-measured 
DBH and height and evaluated by the RMSE and R2.

To show whether carbon storage in trees varied with land cover types, the ALS-
derived tree crown segments were first converted into vector data in a geographic 
information system (GIS), with the amount of carbon storage stored in the attributes. 
The carbon storage within each land cover type was calculated by adding up all the 
carbon storage in trees and dividing by the area of the land cover type. For the Town of 
Whitchurch-Stouffville, the carbon stocks were extrapolated by multiplying the specific 
carbon amount per unit area with the total area of each land cover type. For those land 
cover types that were excluded in the study area (namely, government and institutional 
areas and industrial sites), the carbon stored in government and institutional areas was 
given the same amount per unit area as the residential area, but the carbon stored in 
industrial sites was given zero. Then a citywide carbon storage map was created.

8.4  RESULTS AND DISCUSSION

8.4.1  Analysis of Multispectral ALS Data for Land Cover Classification

Because the classification at the tree genus or species level is important, especially 
for precise biomass estimation, the spectral patterns of the tree class were examined 

(c) ketabton.com: The Digital Library



175A Workflow to Quantify the Carbon Storage in Urban Trees

further to find if current multispectral ALS data sets could distinguish the tree class 
into conifer and deciduous trees. After confirming the tree types in Google Earth, 
there were no obvious distinctions between the tree genus by visual observations. 
However, through close visual observation of the pNDVI data set, the trees with dark-
color leaves, such as the Crimson King Maple tree, could stand out from the tree class 
(Figure 8.6). The multispectral ALS data sets generated in the chapter may not be 
sensitive enough to provide separate classification for conifers and deciduous trees. 
However, the analysis presented here shows that the multispectral ALS intensity may 
be influenced by factors such as the color or reflectivity of the objects, which in turn 
will be beneficial to studies of tree mortality, rooftop solar energy, and so on.

Accuracy assessment was conducted on the classification results in order to 
examine the classification performance of multispectral ALS data. Figure 8.7 shows 
the final classification map. The combination of all six input data achieved the 
highest overall accuracy among the three selections (Table 8.3). The 89% overall 
accuracy was achieved using the ALS-derived raster data, which indicated that the 
contributions of the two calculated indices to the overall accuracy were not significant. 
The comparison between typical ALS data and multispectral ALS data on land cover 
classification was also conducted; the same classification process was applied to the 
nDSM and NIR bands only. The overall accuracy of classification in use of typical 
ALS data was around 79%.

8.4.2 �R esults for the Local Maxima Selection

The second step of the methodology was to find the local maxima in the tree-isolated 
nDSM (the so-called CHM) as the treetop candidates. In this chapter, a new approach is 
proposed to reduce the number of pixels generated by the original 3 × 3 local maxima 

(a) (b) (c)

(d) (e) (f )

FIGURE 8.6  Trees with dark-color leaves in Google Earth and the pNDVI. ((a), (b), (d), and 
(e) reprinted from Google Earth (2015).)
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filter and to find the true treetop pixels. Figure 8.8 illustrates the comparison between 
the original local maxima result performed on the CHM and the refined result, which 
only retained the pixels that had a local maximum on both the maximum intensity 
data and the CHM. The clusters of local maxima in the original result were eliminated 
by the proposed method. Then the watershed segmentation algorithm was applied to 
generate crown segments, using the refined local maxima as the markers (Figure 8.8c).

8.4.3 � Validations for the ALS-Derived Dendrometric Parameters

The accuracies of ALS-derived tree height and crown width were assessed by the 
samples measured in the field. For the ALS-derived tree height, an RMSE of 1.21 m 
(relative RMSE = 6.8%) and a negative bias of 0.2 m (relative bias = −0.1%) are 
given in Table 8.4. For the ALS-derived crown width, an RMSE of 1.47 m (relative 

Grass
House
Open area
Road
Tree
Water 0

N

125 250 375 500
m

FIGURE 8.7  Classification map.

TABLE 8.3
Accuracy Report for the Classification Results

Green NIR SWIR nDSM pNDWI pNDVI Overall Accuracy (%)

Selection 1 √ √ √ √ √ √ 90.23

Selection 2 √ √ √ √ 89.12

Selection 3 √ √ 79.04
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The results of local maxima filtering
performed on the CHM data

Local maxima

a-1: CHM

The results of local maxima filtering refined by
the maximum intensity data

Refined local maxima

(b-1)

(c-1)

(b-2)

(a-1)

(a)

(b)

(c)

b-1: CHM b-2: Maximum intensity

The results of watershed segmentation applied
on the CHM with the refined local maxima as
markers

Crown segments

FIGURE 8.8  Results obtained by local maxima filtering and the marker-controlled watershed 
segmentation.

TABLE 8.4
Validation Statistics for the ALS-Derived Dendrometric 
Parameters

Parameter RMSE RMSE% Bias Bias%

Height (m) 1.21 6.8 −0.20 −0.1

Crown width (m) 1.47 16.4 −0.18 −2
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RMSE = 16.4%) and a negative bias of 0.18 m (relative bias = −2%) were observed. 
The tree height was underestimated because of the undergrowth and factors related 
to the flight height (1000 m) and the point density (7 to 8 points/m2). The relative 
RMSE of the crown width was mainly caused by the resolution of the CHM and the 
results of crown segmentation.

8.4.4  Validations for the ALS-Predicted DBH and Tree Carbon

The results of model fitting and validation of the six ALS-DBH regression models 
are listed in Table 8.5. The 40 field-measured samples were previously split into four 
groups, with 10 trees in each group. The models were iteratively fitted by 20 trees 
selected from two groups out of the four and were validated by the remaining 20 trees. 
Model 2 was selected as the overall best model to predict DBH in this study because 
it has a relatively high coefficient of determination (R2 = 86%) from model fitting 
and a relatively low RMSE (5.6 cm) from the validation. The regression equation is

	 DBH ( )= − + − +11 2792 0 2958 3 2637. . .CD H 	 (8.8)

To determine the number of decimal places for the coefficients in the regression 
equation, the residuals between the DBH values predicted by the coefficients with 
eight decimal places and those predicted by coefficients rounded to two, three, and 
four decimal places, respectively, are compared in Figure 8.9. To keep high prediction 
accuracy, coefficients in the regression model are rounded to four decimal places. 
Moreover, the R2 between field-measured tree height and crown width was calculated 
as 0.34, indicating insignificant correlation between these two variables. Though 
DBH cannot be directly measured on the CHM, all the generated ALS-DBH models 
showed that the DBH correlated well with ALS measurements. The accuracies of 
the ALS-modeled DBH and ALS-derived carbon storage are given in Table 8.6. 
The predicted DBH using ALS-derived parameters corresponded to an RMSE of 
6.4 cm (relative RMSE = 13.1%) and a bias of 0.4 cm. The relationship between field-
measured DBH and ALS-modeled DBH is plotted in Figure 8.10. The results are 
compared with the reference carbon storage estimated by field-measured DBH and 
plotted in Figure 8.11. The R2 values of both DBH and carbon storage were both above 

TABLE 8.5
Results of Model Fitting and Model Validation

Model
Model Fit

R2

Model Fit
RMSE (cm)

Validation
R2

Validation
RMSE (cm)

1 0.83 5.35 0.80 6.82

2 0.86 6.60 0.76 5.60

3 0.86 3.86 0.71 8.25

4 0.75 7.89 0.77 4.82

5 0.78 5.59 0.85 6.55

6 0.81 7.00 0.83 5.20
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0.80. The predicted carbon storage using the ALS-modeled DBH corresponded to an 
RMSE of 142 kg (28.6%) and a bias of 14.4 kg.

8.4.5  Analysis of the ALS-Estimated Results

The accuracy of tree height measurements using ALS data has previously been studied 
by Yu et al. (2004), Kaartinen et al. (2012), and Hadaś & Estornell (2016). Yu et al. 
(2004) found that as flight altitude increased from 400 to 1500 m, the accuracy of 
tree heights lowered from 0.76 to 1.16 m for single tree species. Kaartinen et al. (2012) 
reported that the best methods that utilized the local maxima finding with a point 
density of 8 points/m2 could obtain an RMSE of 60–80 cm for tree heights. Hadaś 
& Estornell (2016) showed that the bias of tree height measurements could decrease 
from −1.48 to −0.72 m if the point density increased from 3.5 to 9 points/m2. The 
RMSE achieved in the present study is in line with these studies and is potentially 
affected by the errors generated during the field measurements. Both overestimations 
of the crown size and underestimations of the tree heights are likely a result of the 
overlaying crown covers of the dominant tree and the suppressed trees, but could 
be mitigated if the resolution of CHM is at the submeter level. The results of ALS-
modeled DBH are in line with the findings in Hauglin et al. (2014) and Popescu (2007) 
regarding the tree height and crown diameter as good predictors to predict DBH using 
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FIGURE 8.9  Residual plots for model-predicted DBH generated by coefficients with two, 
three, and four decimal places.

TABLE 8.6
Accuracy of ALS-Predicted versus Field-Measured 
Results

Parameter RMSE RMSE% Bias Bias%

DBH (cm) 6.39 13.1 0.44 0.1

Carbon (kg) 142.0 28.6 14.4 2.9
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FIGURE 8.10  Scatterplot of the ALS-modeled DBH versus field-measured DBH.
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linear regression. The accuracy found in the present study is higher than in these two 
studies. Hauglin et al. (2014) reported an RMSE of 35% for ALS-estimated DBH 
of Norway spruce. Popescu (2007) reported a lower RMSE (4.9 cm) and higher R2 
compared to the present study. However, considering that the accuracies in Popescu 
(2007) were for a single tree species, which had an average DBH of 29.55 cm, and 
that they used all 43 sampled trees to construct the model and validate the model 
using the same data set, the RMSE% and R2 in their study would understandably be 
higher than that in this study. For aboveground biomass, Popescu (2007) reported 
an RMSE of 47% for a single tree species. Kankare et al. (2013) reported RMSEs of 
26.3% and 36.8% for pines and spruce, respectively. Hauglin et al. (2014) achieved 
an RMSE of 35.1% for biomass estimation. Though the achieved accuracy of carbon 
estimation is higher in the present study, these studies are not entirely comparable 
because some studies used field-destructive measurements as reference data, which 
were not available in this study. Also, because genus information is not available, 
the estimation of carbon stocks was done by the allometry equations for all species 
in Lambert et al. (2005), so that the derived carbon mainly depended on the ALS-
derived DBH and height, with little consideration given to the differences in species.

8.4.6  Analysis of the Carbon Storage

There were a total of 2555 dominant trees in the study area. The trees were located 
along the roadsides, in backyards, and around the lakes. The average tree carbon 
was 484.3 kg and resulted in a total of 1.24 kt C. The study area could be divided 
into four land use types: residential, park and recreational, open area, and water. 
The open area occupied the largest portion of the study area, 47.0 ha. The residential 
area occupied 25.8 ha. The park had a small area of 2.5 ha. The extracted carbons in 
trees were therefore grouped based on the land use type, and the amount of carbon 
stored in each land cover type was calculated. Within the study area, the open 
area contained the largest tree carbon stocks (682.7 t), followed by the residential 
area (362.6 t), and finally the parks and recreational area (29.2 t). The tree carbon 
storage for the open area, residential area, and parks on a per unit area basis were 
14.54, 14.08, and 11.57 t C/ha, respectively. City wide, open area occupied 83.7% 
(191.5 km2) of the total city area and contained the largest carbon storage, 278.4 kt 
C. Residential area covered 8.3% (19.4 km2) of the total city area and contained 
27.3 kt C tree carbons. Parks covered 12.8 km2 with a total carbon storage estimated 
at 14.8 kt C. The carbon storage map shows that large tree carbon stocks are 
accumulated in urban environments and are distributed heterogeneously among 
land use types (Figure 8.12).

The estimated tree carbons in the study area were in line with the estimation of 
carbon storage in Canadian urban trees conducted by researchers at Environment 
Canada (Pasher et  al., 2014). Pasher et  al. (2014) estimated the carbon stocks in 
trees by applying the crown cover area of urban trees and a Canadian-specific area-
based growth rate for urban trees. Pasher et al. (2014) reported a total urban area of 
5317 km2 in the Ontario Mixedwood Plains, with an estimation of carbon storage at 
9177.6 kt C, resulting in a carbon storage per unit urban area of 17 kt C/ha. This is 
slightly more than what has been predicted in this study (around 14 kt C/ha). The 
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main source of the difference comes from the approaches to estimating the biomass 
amounts between the present study and that used in Pasher et al. (2014).

8.5  CONCLUSIONS

This chapter proposed a workflow to map land covers and estimate aboveground 
carbon storage in trees at a spatial resolution of 1 m using multispectral ALS data. 
This chapter shows that good classification results can be obtained solely from 
multispectral ALS data sets. This study achieved an overall accuracy of 90%, which 
was 11% higher than that obtained using single-wavelength ALS data. Spectral 
patterns for impervious surfaces (road, rooftops) and single-return vegetation (grass) 
are observed to have similar patterns in the optical imagery. The dendrometric 
parameters at the single-tree level can be derived directly from the multispectral 
ALS data. It also shows how the use of both spectral and geometric properties of 
multispectral ALS data can improve the detection of treetops. The improvement 
could be more significant if the resolution of the CHM were finer.

This chapter presented the feasibility of applying forest-based allometric methods 
to assess carbon stocks in urban environments. Dominant trees with fewer underneath 

Carbon storage per land cover type

No data for waterbodies and industrial sites

0.22 kt C in Government and institutional area

14.8 kt C in parks and recreational areas

27.3 kt C in residential areas

278.4 kt C in open areas0 5 10

N
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FIGURE 8.12  Carbon storage map for the Town of Whitchurch-Stouffville, Ontario, Canada.
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or nearby trees were better detected and analyzed in the study. Though DBH cannot 
be directly measured from ALS data, the ALS-predicted DBH remains a powerful 
predictor for estimating tree carbon at the individual tree level. More accurate tree carbon 
measurements could be obtained if genus information and crown base heights were 
further investigated. An improvement of derivation of the crown width would also help in 
better prediction of tree carbon stocks. This chapter derived similar carbon amounts per 
unit area in both residential areas and open areas within the study area, because the open 
area had twice the size of the residential area but the density of the canopy cover was less 
than it was in the residential area. Citywide carbon storage estimation was derived in this 
chapter by extrapolating the values within the study area to the entire city based on the 
specific proportion of each land cover type in the city. This approach is applicable here 
because the Town of Whitchurch-Stouffville has a relatively simple city structure, the 
study area has included the major components of the city, and those land covers excluded 
in the study area only occupied a small proportion of the entire city.

Urban ecosystems are an important component in the global carbon cycle. In 
the context of urban sprawl, quantifying the carbon storage for urban areas is very 
important in terms of getting reliable estimations of carbon sequestration rate and 
magnitude, but it is a difficult and complex task that requires advanced analysis 
techniques and data sources to achieve fine-scale estimation. The methods developed 
here provide an accurate and detailed estimate of how urban trees in a Canadian city 
play the role of a carbon sink. The presented approach of estimating carbon stocks 
in urban trees takes advantage of the available Canada-wide allometry relationship 
between biomass and tree DBH and height, as well as the power of the ALS system 
in providing the estimation of dendrometric parameters. The methodology proposed 
does not require destructive sampling or large-scale field works. It is applicable to 
other urban areas and is beneficial to better understanding of urban carbon budgets 
and urban heat island effects. It also provides valuable information on the impact of 
climate change to city planners.

In conclusion, this chapter has developed a detailed workflow to estimate tree 
carbon stocks from multispectral ALS data by using a series of techniques including 
SVM classification, watershed segmentation, and allometry-based linear regression 
modeling. This chapter also demonstrated the strong capability of multispectral ALS 
data in land cover mapping and tree-level inventory in urban environments. The Titan 
scanner showed a trend for the development of airborne LiDAR technology. This 
scanner is able to realize a series of environmental and topographic applications that 
have been performed previously by photogrammetric data.
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9 Suitable Spectral 
Mixing Space Selection 
for Linear Spectral 
Unmixing of Fine-Scale 
Urban Imagery

Jian Yang

9.1  INTRODUCTION

To date, subpixel methods have most frequently been used to extract urban attributes 
(e.g., sealed surface, green space). As a prevalent component of subpixel methods, 
linear spectral unmixing has captured increasing attention for its use in sealed surface 
or green space mapping in urban areas. Since a spectrum within a pixel collected by 
a remote sensor is always mixed by different surface materials (Shimabukuro and 
Smith 1991), linear spectral unmixing is well known as a procedure to decompose 
a mixed spectrum into a group of fractions on the basis of pure surface materials 
(Keshava 2003). In the conventional sense, coarse-medium spatial resolution imagery 
is the most appropriate for implementing linear spectral unmixing, and thus is the 
most widely applied for mapping urban sealed surfaces (Phinn et al. 2002; Wu and 
Murray 2003; Lu and Weng 2006; Weng et al. 2008; Van de Voorde et al. 2009; Weng 
et al. 2009) or green space (Small 2001; Song 2005; Small and Lu 2006; Liu and Yang 
2013). With the advances in remote sensing techniques, more endeavors have been 
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made to spectrally unmix high spatial resolution imagery to extract sealed surfaces 
(Lu and Weng 2009; Wu 2009; Yang and Li 2015; Yang and He 2017) and green space 
(Nichol and Wong 2007; Nichol et al. 2010) in urban areas.

In high spatial resolution imagery, an urban sealed surface is spectrally differentiated 
into high- and low-albedo materials, while bare soil becomes more spectrally similar 
to high-albedo materials (Yang et al. 2014; Yang and He 2017). From this point of 
view, the vegetation-high albedo-low albedo model (Small 2003) is more appropriate 
than the classic vegetation-impervious surface-soil model (Ridd 1995) for spectrally 
unmixing high spatial resolution urban imagery. As demonstrated by Yang et al. (2014), 
multispectral bands of high spatial resolution imagery can construct various spectral 
mixing spaces for the description of urban surface materials at fine scales. Specifically, 
a two-dimensional spectral mixing space constructed by a non-near-infrared (IR) band 
and a near-IR band is able, and is the most widely used, to implement the vegetation-
high albedo-low albedo model for linear spectral unmixing (Yang et al. 2015; Yang 
and He 2017). Within this type of two-dimensional spectral mixing space, all of the 
unmixed pixels can form a scatterplot of a triangle, three vertices of which represent 
the pure pixels (hereafter referred to as end-members) of vegetation, high albedo, 
and low albedo, respectively. To identify these three end-members, Yang et al. (2014) 
proposed an automated method based on end-member spatial distribution in the two-
dimensional spectral mixing space, which was further developed by Yang et al. (2015).

In addition to end-member identification, the accuracy of linear spectral unmixing 
(ALSU) is also strongly dependent upon the selection of spectral mixing space. As 
suggested by Small (2003), a good unmixing result is largely attributed to a good 
scatterplot triangle that is well spanned, with straight or convex edges within the 
given two-dimensional spectral mixing space. Based on this assumption, the space 
constructed by the red and near-IR1 bands has proven to be the best for spectrally 
unmixing high spatial resolution urban imagery (Yang et al. 2015; Yang and He 2017). 
In these studies, however, the selection of spectral mixing space was determined by 
visual interpretation rather than quantitative assessment. In the current study, we 
therefore propose a new indicator to quantify the structure of scatterplot triangles in 
different two-dimensional spectral mixing spaces, and then to select the best one for 
spectrally unmixing high spatial resolution urban imagery. To ensure a good scatterplot 
triangle with straight or convex edges, we hypothesized that a few pixels should be 
located outside the triangle, though not overly far away from the triangle, in case there 
were some outliers. The rest of this chapter is organized as follows. Section 9.2 will 
describe the workflow of linear spectral unmixing, as well as our proposed indicator 
for quantifying the structure of the scatterplot triangle. Section 9.3 will introduce the 
selected study site, experimental data set, and results. Section 9.4 will discuss our 
experimental results. Finally, the main conclusions are reiterated in Section 9.5.

9.2  METHODS

9.2.1 L inear Spectral Unmixing

Due to the impacts of low sun elevation, off-nadir viewing angle, and high-rise 
buildings, shadows are widely distributed across fine-scale urban imagery (Yang 
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et al. 2015). Because the spectral features of surface materials in unshadowed areas 
are significantly different from those in shadowed areas, it is necessary to implement 
linear spectral unmixing in unshadowed and shadowed areas separately (Yang and 
He 2017). In the current study, the object-based method was utilized to separate 
the unshadowed and shadowed areas. The multiresolution segmentation algorithm 
(Benz et al. 2004), which is implemented in eCognition Developer (Trimble Munich, 
Munich, Germany), was first used to produce meaningful segments, with shape, 
compactness, and scale parameter assigned as 0.1, 0.5, and 50, respectively. For 
each spectral band, the Digital Number (DN) values of all pixels within a segment 
were thereafter averaged to represent that segment. Furthermore, we averaged eight 
spectral bands to create brightness imagery, and implemented the conventional 
histogram threshold method to differentiate the unshadowed and shadowed segments 
(Dare 2005; Chen et al. 2007; Zhou et al. 2009).

In our study, the vegetation-high albedo-low albedo model was implemented for 
spectrally unmixing fine-scale urban imagery within different two-dimensional 
spectral mixing spaces constructed by a non-near-IR band and a near-IR band 
(Figure 9.1). Three vertices of this scatterplot triangle represent the end-members 
of vegetation, high albedo, and low albedo, respectively. To identify these three end-
members, we measured the area of the triangle formed by any three pixels from 
the scatterplot, then selected the three pixels that resulted in the largest area (Yang 
et al. 2014). Yang et al. (2015) made use of the convex hull Graham’s scan algorithm 
(Graham 1972) to expedite this procedure.

Mathematically, linear spectral unmixing is a process to solve the following 
equations:

	 DN f DN f DN f DNV
V

H
H

LNon-Near-IR Non-Near-IR Non-Near-IR Non= × + × + × --Near-IR
L

	 (9.1)

	 DN f DN f DN f DNV
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FIGURE 9.1  Scatterplot triangle in the two-dimensional spectral mixing space constructed 
by a non-near-IR band and a near-IR band. Black dots represent the unmixed pixels.

(c) ketabton.com: The Digital Library



190 High Spatial Resolution Remote Sensing

	 f f fV H L+ + = 1	 (9.3)

where DNNon-Near-IR and DNNear-IR are the DN values of any unmixed pixel in a 
non-near-IR band and a near-IR band, respectively. Additionally, DNX

Non-Near-IR and 
DNX

Near-IR are the DN values of each end-member (X = V, H, L, i.e., vegetation, high 
albedo, and low albedo) in a non-near-IR band and a near-IR band, while fV, fH, and 
fL are the fractions of vegetation, high albedo, and low albedo, respectively. For any 
unmixed pixel located outside the scatterplot triangle, fV, fH, or fL must be beyond the 
fraction range between 0 and 1. To solve this problem, we moved these outliers to 
their nearest vertices or edges of the scatterplot triangle prior to the solution of the 
preceding three equations (Yang et al. 2015). Two sets of end-members were identified 
from the unshadowed and shadowed areas, then used for spectrally unmixing the 
corresponding areas. Finally, both fraction maps were merged together to produce 
the final unmixing result.

To quantify the accuracy of linear spectral unmixing, we classified the pan-
sharpened multispectral imagery by random forest (Breiman 2001) and calculated 
the reference proportion or amount for each end-member (Yang et al. 2014; Yang and 
Li 2015; Yang and He 2017). With respect to each end-member, the correct unmixed 
proportion (CUP) was obtained by dividing the number of correct unmixed pixels 
by the total number of pixels over the entire imagery (Yang et al. 2014; Yang and Li 
2015; Yang and He 2017). The ALSU was defined as the average value of CUP by 
all three end-members.

9.2.2 Q uantifying the Structure of the Scatterplot Triangle

Upon the identification of three end-members, the scatterplot triangle can be 
constructed in the two-dimensional spectral mixing space (Figure 9.1). In linear 
spectral unmixing, a good scatterplot triangle is always characterized by straight or 
convex edges (Small 2003). From this perspective, a good triangle should ensure that 
few unmixed pixels are located outside. Although our unmixing method was able to 
move the outliers to their nearest vertices or edges, the abundance of unmixed pixels 
outside the scatterplot triangle could substantially lower the unmixing accuracy. Thus, 
we should measure the outlier rate (OR) for the scatterplot triangle, as defined by

	
OR

Number of Outliers
Number of Total Unmixed Pixels

%= ×100
	

(9.4)

Meanwhile, we should also calculate the average outlier distance (OD) in different 
spectral mixing spaces to quantify how far the unmixed pixels are outside the triangle. 
Note that OD is measured between each outlier and its nearest vertex or edge of the 
scatterplot triangle. To integrate the merits of both OR and OD, we further proposed 
a new indicator (ORD [Integration of Outlier Rate and Distance]) to quantify the 
structure of the scatterplot triangle, as denoted by

	 ORD OR OD= × 	 (9.5)
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191Suitable Spectral Mixing Space Selection for Linear Spectral Unmixing

Due to the different scatterplot triangles for linear spectral unmixing, the values 
of OR, OD, and ORD were calculated for the unshadowed and shadowed areas, 
respectively. The values of OR, OD, and ORD, weighted by their respective areas, 
were summed up for the entire imagery. Hereafter, the OR, OD, and ORD values refer 
to the weighted indicators for both the unshadowed and shadowed areas in different 
spectral mixing spaces.

Furthermore, we proposed another indicator to quantify the similarity of the 
scatterplot triangles of unshadowed and shadowed areas in different spectral mixing 
spaces. Regardless of rotation, the similarity of scatterplot triangles (TS) can be 
expressed as

	 TS MinIA MinIA SMinIA SMinIAUS S US S= − + − 	 (9.6)

where MinIAUS and SMinIAUS are the smallest and second-smallest interior angles 
of the scatterplot triangle in the unshadowed areas, and MinIAS and SMinIAS are 
the smallest and second-smallest interior angles of the scatterplot triangle in the 
shadowed areas.

9.3  EXPERIMENTS

9.3.1 S tudy Site and Experimental Data Set

Our study site was located in downtown Toronto, Ontario, Canada, since Toronto 
is typically an urban mosaic of green space, sealed surface, and shadow. The 
WorldView-2 data set for the Greater Toronto Area (GTA), acquired on June 2, 2011, 
was used. It contains eight multispectral bands (i.e., coastal, blue, green, yellow, 
red, red edge, near-IR1, and near-IR2) with a spatial resolution of 2 meters, and a 
panchromatic band with a spatial resolution of 0.5 meters. To obtain the reference 
imagery, as mentioned previously, the multispectral and panchromatic bands were 
fused to produce pan-sharpened multispectral imagery, with a spatial resolution of 
0.5 meters. The fusion process was implemented by NNDiffuse Pan Sharpening (Sun 
et al. 2014), which is a new algorithm in ENVI 5.3. Finally, a 1 × 1 kilometer subset 
of original multispectral imagery was clipped for our experimental data (Figure 9.2), 
as well as the corresponding subset of pan-sharpened multispectral imagery.

9.3.2 E xperimental Results

We examined the histogram of brightness imagery (i.e., the mean of the eight spectral 
bands) based on objects generated from multiresolution segmentation (Figure 9.3). 
The brightness histogram is multimodal, with the shadowed segments occupying the 
lower end of the histogram. Therefore, the optimal threshold value of 190 (the circle 
in Figure 9.3) was determined by this histogram thresholding method. Consequently, 
the unshadowed and shadowed areas were separated (Figure 9.4), occupying 94.84% 
and 5.16% of the entire study site, respectively.

In this study, six non-near-IR bands (i.e., coastal, blue, green, yellow, red, and 
red edge) and two near-IR bands (i.e., near-IR1 and near-IR2) of WorldView-2 
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multispectral imagery constructed 12 spectral mixing spaces for the unshadowed 
(Figure 9.5) and shadowed (Figure 9.6) areas, respectively. Within each spectral 
mixing space, the scatterplot triangle was formed by three automatically identified 
end-members of vegetation, high albedo, and low albedo (the triangles in Figures 9.5 
and 9.6). Compared to the others, the spectral mixing space constructed by the red and 
near-IR1 bands demonstrated the best triangle, matching the pixel cloud in this two-
dimensional space well, especially for the unshadowed areas. To further demonstrate 
the triangle structures for all 12 spectral mixing spaces, three quantitative indicators 
of the scatterplot triangles (i.e., OR, OD, and ORD) are summarized in Table 9.1, as 
well as their corresponding accuracy of linear spectral unmixing (i.e., ALSU).

For the preceding 12 spectral mixing spaces, we plotted the accuracy of linear 
spectral unmixing (i.e., ALSU) versus our three proposed indicators of scatterplot 
triangles (i.e., OR, OD, and ORD) in Figure 9.7. All three indicators were negatively 
related to the unmixing accuracy, among which the ORD value performed the 
highest, with an R2 of 0.65 (OR = 0.31; OD = 0.083). We therefore concluded that 
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ORD was the best indicator for characterizing the structure of scatterplot triangles, 
and furthermore for representing the accuracy of linear spectral unmixing. Similar 
to our visual interpretation, the triangles formed in the spectral mixing space 
constructed by the red and near-IR1 bands were the best match for the pixel clouds 
with the lowest ORD value of 0.49, corresponding to the highest ALSU value of 
75.24%. It was also found that the scatterplot triangles for the unshadowed and 
shadowed areas were not the most similar in this space. Conversely, its TS value 
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FIGURE 9.5  Scatterplot triangles (triangles) in different spectral mixing spaces constructed 
by a non-near-IR band and a near-IR band (unshadowed areas).
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was the highest, at 29.85. Within this space, the result of linear spectral unmixing 
is demonstrated in Figure 9.8.

9.4  DISCUSSION

As shown previously, our proposed new indicator, ORD, was negatively correlated to 
the unmixing accuracies of different two-dimensional spectral mixing spaces, with a 
high R2 of 0.65. In the space constructed by the red and near-IR1 bands, the value of 
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FIGURE 9.6  Scatterplot triangles (triangles) in different spectral mixing spaces constructed 
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ORD (i.e., 0.49) was the lowest, thus corresponding to the highest accuracy of linear 
spectral unmixing (i.e., 75.24%). This conclusion was also consistent with the visual 
comparisons from existing studies (Yang et al. 2015; Yang and He 2017), which validated 
the effectiveness of our proposed new indicator to optimize the best spectral mixing 
space in two dimensions. On the other hand, it was clear that the scatterplot triangles for 
the unshadowed and shadowed areas were not the most similar (i.e., TS = 29.85 versus 
the lowest TS value of 4.82 from the blue + near-IR2 bands) in the spectral mixing 
space constructed by the red and near-IR1 bands. This observation was not beyond 
our expectations since the spectral similarity of unshadowed and shadowed areas was 
determined by their corresponding surface materials. Even identical surface materials 
would demonstrate different scatterplot triangles in different spectral mixing spaces. As 
long as both unshadowed and shadowed areas showed good scatterplot triangles, it would 
be reasonable to implement our linear spectral unmixing process in the unshadowed and 
shadowed areas separately.

When expanding the utilization of our proposed new indicator from a two-
dimensional to an n-dimensional spectral mixing space, the unmixed pixels could 
form a scatterplot of a polyhedron with a vertex close to the coordinate origin, as 
long as this n-dimensional space was able to represent the corresponding n end-
members. For example, the scatterplot of a three-dimensional space would be a 
tetrahedron, which could be also regarded as three triangles when projecting it to 
three two-dimensional spaces. As demonstrated by Yang et al. (2014), the vertices of 
a scatterplot polyhedron could be identified by the determinant of n n-dimensional 
vectors. In a two-dimensional spectral mixing space, we could directly calculate 
the number of unmixed pixels outside the triangle and their average distance to the 
triangle. The unmixed pixel should be outside its scatterplot triangle if any of three 

TABLE 9.1
Summary of Three Indicators of Scatterplot Triangles (i.e., OR, 
OD, and ORD) for 12 Spectral Mixing Spaces and Their 
Corresponding Accuracy of Linear Spectral Unmixing (i.e., ALSU)

Spectral Mixing Space OR (%) OD ORD ALSU (%)

Coastal + Near-IR1 21.46 18.51 4.58 68.74

Blue + Near-IR1 30.54 65.18 19.77 59.41

Green + Near-IR1 26.68 134.14 33.94 53.25

Yellow + Near-IR1 11.13 52.63 6.06 65.32

Red + Near-IR1 6.99 7.30 0.49 75.24

Red Edge + Near-IR1 0.45 287.62 0.92 65.28

Coastal + Near-IR2 19.57 36.51 6.87 65.84

Blue + Near-IR2 16.94 30.65 4.93 64.32

Green + Near-IR2 11.41 48.12 4.86 61.23

Yellow + Near-IR2 5.25 85.33 2.15 66.21

Red + Near-IR2 17.86 44.24 7.46 62.12

Red Edge + Near-IR2 11.43 36.98 3.75 63.45
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197Suitable Spectral Mixing Space Selection for Linear Spectral Unmixing

unmixed fractions (i.e., fV, fH, and fL) are not between 0 and 1. Similarly, the unmixed 
pixel should be outside the polyhedron in an n-dimensional spectral mixing space if 
any of the unmixed fractions are beyond the range of 0 to 1. However, it would not be 
a trivial task to obtain the OD or even the ORD value in higher dimensions, as with 
the OR value, since the distance from a point to a polyhedron in an n-dimensional 
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space could be complicated to calculate. To simplify this calculation, we could project 
the polyhedron to a series of two-dimensional spaces and then compute the OD value 
for each two-dimensional space. In this case, the final OD value could be derived by 
averaging all of the OD values in different two-dimensional spaces.

9.5  CONCLUSIONS

To quantify the structure of a scatterplot triangle for spectrally unmixing high spatial 
resolution urban imagery, the current study proposed a new indicator, ORD, to represent 
the proportion of unmixed pixels outside the triangle and their average distance to the 
triangle. Our experimental results showed that the ORD value was strongly related to the 
unmixing accuracy, indicating that the quality of linear spectral unmixing was largely 
dependent upon the structure of scatterplot triangles in different two-dimensional 
spectral mixing spaces. Consequently, the spectral mixing space constructed by the 
red and near-IR1 bands was shown to be the best for the vegetation-high albedo-low 
albedo model, although its triangle similarity of unshadowed and shadowed areas was 
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not the highest among all of the two-dimensional spectral mixing spaces. The proposed 
indicator of ORD was proven effective at optimizing the two-dimensional spectral 
mixing space; however, more work should be conducted in higher dimensions.
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10 Segmentation 
Scale Selection in 
Geographic Object-
Based Image Analysis

Xiuyuan Zhang, Shihong Du, and Dongping Ming

10.1  INTRODUCTION

10.1.1 S cale Issues in Geographic Object-Based Image Analysis

The past several years have witnessed the development of geographic object-based 
image analysis (GEOBIA) (Hay & Castilla, 2008), which has been widely used 
in dealing with very-high-resolution (VHR) images. Objects refer to homogenous 
image regions with continuous visual clues or consistent semantics, which are often 
represented as pixel clusters at multiple scales (Blaschke, 2010). Objects essentially 
serve as the bridge connecting geographic entities and image elements (Figure 10.1). 
As reported in Figure 10.1, the geographic entities (Figure 10.1a) have significant 
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differences with image pixels (Figure 10.1c), but they have close relations with 
image objects (Figure 10.1b); thus, image objects are better than pixels to represent 
geographic entities, and play an important role in geographic studies. GEOBIA uses 
image objects to represent geographic entities both spatially and semantically, and 
extracts their representations and features through spatial, spectral, and temporal 
scales, so as to generate new geographic information in geographic information 
system (GIS)-ready format (Hay & Castilla, 2008). It has a wide range of applications 
(Table 10.1).

As reported in Figure 10.2, object segmentation aims to delineate remote sensing 
images into meaningful image objects. Among the existing image segmentations, 
multiresolution segmentation (MRS) provided by a commercial software, eCognition 
(Trimble, 2011), is the most widely used segmentation method in GEOBIA and it 
can produce meaningful objects at multiple scales (Baatz & Schäpe, 2000). Scale 
hereafter refers to the segmentation scale, which is an important parameter in the 
MRS algorithm and measures the largest heterogeneity of generated image objects 
(Smith, 2010).

Segmentation scale is the most important parameter, dominating the size of 
segmentation results. Generally, larger scales result in larger objects, and smaller 
scales result in smaller objects (Myint et al., 2011). Figure 10.3 reports the segmentation 
results of a building at the multiple scales of 30, 50, and 70. Generally, the 70-scale 
objects are much larger than those at the scale of 30, and each 70-scale object can 
be composed of several 30-scale objects because the MRS is boundary constrained. 
Based on visual interpretation, the building is divided into several image objects at 
the scale of 30, a phenomenon called oversegmentation (Figure 10.3a); while the 

(a) (b) (c)

FIGURE 10.1  Relationship among (a) geographic entities, (b) image objects, and (c) 
image pixels.

TABLE 10.1
Overview of GEOBIA’s Application Field

Types Application Fields Examples

Relatively natural landscapes Forests Mallinis et al. (2008)

Wetland Powers et al. (2012), Bock et al. (2005)

Shrub land Stow et al. (2008), Laliberte et al. (2004)

Human-dominated landscapes Crop Peña-Barragán et al. (2011)

Impervious surface Im et al. (2012)

Parkland Yu et al. (2006)

Urban land covers Hu et al. (2015), Cleve et al. (2008)
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building is accurately delineated at the scale of 50 (Figure 10.3b) because it can be 
solely segmented. On the contrary, at the scale of 70, the building is mixed with 
surrounding trees, which are represented as a single image object (Figure 10.3c), 
which is called undersegmentation (Meinel & Neubert, 2004). Both over- and 
undersegmentation results are inappropriate to subsequent classification, while only 
the objects that can exactly represent geographic entities are regarded as accurate 
results, and the corresponding scales are defined as the optimal scales (Drǎguţ et al., 
2010; Johnson & Xie, 2011).

10.1.2  Factors Influencing Scale Selection

It has been popularly recognized that the optimal scale is a variable (Huang et al., 2003; 
Drǎguţ et al., 2010). Zhang and Du (2016) proposed that the optimal segmentation 
scales can be impacted by three factors: category system, surrounding contrast, and 
internal heterogeneity. First, objects’ categories can impact segmentation scales, and 
usually different object categories are related to different optimal scales. Taking the 
image scene in Figure 10.4 as an example, the road is oversegmented, but the cars are 
undersegmented at the same scale. Second, different objects in the same class also 

VHR remote sensing image 1) Object segmentation

3) Object classification 2) Feature extraction

FIGURE 10.2  GEOBIA consists of three steps including object segmentation, feature 
extraction, and object classification.

(a) (b) (c)

FIGURE 10.3  Segmentation results at scales of (a) 30, (b) 50, and (c) 70.
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correspond to different optimal scales because of the self-size diversity. Accordingly, 
different kinds of classes or even objects should be well segmented and classified at 
different scales. For example, the buildings having strong contrast with surroundings 
(Figure 10.5a) are oversegmented, while the buildings mixed with the surroundings 
(Figure 10.5b) are undersegmented at the same scale. Third, the different components 
within an object may need to be analyzed at different scales. As a component of 
the building, pixel P1 (Figure 10.5a) on the building’s boundary is mixed with the 
neighboring road pixels (undersegmentation); while pixel P2 inside the building 

FIGURE 10.4  Segmentation results of a road with several cars where object boundaries are 
delineated by black lines.

(a)

P1

P2

(b)

FIGURE 10.5  Comparison of two sets of buildings with (a) strong and (b) weak surrounding 
contrasts, and their segmentation results at the same scale.
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is segmented alone and distinguished from other components (oversegmentation). 
Therefore, the three influencing factors, different categories, surrounding contrasts, 
and internal heterogeneities of objects, often correspond to different optimal scales. 
The first factor is global, while the last two are local and represent local heterogeneity.

In the following, we select the optimal scales for object segmentation so as to 
generate accurate objects and avoid over- and undersegmentations. For selecting 
optimal scales of objects, the three influencing factors should be taken into 
consideration. The used terminologies in this chapter are outlined in Table 10.2.

10.2  STUDY AREA AND EXPERIMENTAL DATA

We selected a region of Beijing as the study area (Figure 10.6). This area, located at 
Peking University, contains many natural landscapes including vegetation, water, and 
soil, as well as numerous artificial structures, e.g., many kinds of buildings (commercial 
buildings, apartments, shantytowns, and stadiums) and roads. Accordingly, this 
study area with high heterogeneity can hardly be segmented with fixed scales. A 
WorldView-2 image, acquired in the summer of 2010, was used (Figure 10.6), and 
its multispectral bands were first merged with the panchromatic band to produce a 
pan-sharpened image of 0.5 m resolution with eight bands. This image is used in the 
following sections to evaluate the scale-selection methods.

10.3  POSTSEGMENTATION SCALE SELECTIONS

As demonstrated previously, segmentation scale can significantly impact GEOBIA 
results, but it can be variable owing to three influencing factors: categories, 
surrounding contrasts, and internal heterogeneities. Accordingly, we need to select 

TABLE 10.2
Terminologies Repeatedly Used in This Chapter

Terminologies Meanings

GEOBIA Geographic object-based image analysis is a strategy for extracting image 
object information and complements traditional per-pixel image analysis.

Image objects Homogenous regions of images that are collections of adjacent pixels and 
generated based on a certain rule.

Multiscale segmentation Segmentation results at multiple scales organized in a hierarchical 
structure, with the finest scale on the bottom and the coarsest on the top.

Object classification A technique using objects as basic units and features as clues to label each 
object with a defined category.

Object heterogeneity An important criterion for measuring the internal nonstationarity of 
objects, which is basic to object segmentation.

Object segmentation A technique for dividing an image into spatially continuous and 
non-overlapping patches, with each patch spatially delineating an object.

Segmentation scale An important parameter in object segmentation and measures the largest 
heterogeneity of generated image objects.
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the optimal one from multiple scales. Most existing scale-selection methods choose 
optimal scales from multiscale segmentation results, i.e., they first segment satellite 
images at multiple scales and then choose a scale level as the optimal one. These 
methods are so-called postsegmentation scale selections and mainly fall into two 
types: unsupervised and supervised (Table 10.3).

10.3.1 U nsupervised Scale Selection

Unsupervised methods essentially define several indicators to evaluate multiscale 
segmentation results, and select the most accurate one as the final segmentation 
results. These methods need no prior information, and thus are efficient for most 
GEOBIA. There are two indicators for evaluating segmentation results, i.e., local 
variance (LV) (Drǎguţ et al., 2010, 2014) and global score (GS) (Johnson & Xie, 2011).

FIGURE 10.6  WorldView-2 image (in band combination 5/3/2, true color) of study area.

TABLE 10.3
Scale-Selection Methods

Types Criterions for Scale Selection Examples

Unsupervised Local variance Drǎguţ et al. (2010, 2014)

Local variance and correlations Johnson and Xie (2011)

Supervised Classification accuracy Zhang and Du (2016)

Spatial overlap Clinton et al. (2010), Guo and Du (2016), 
Witharana and Civco (2014), Zhang et al. (2015a)

Feature importance Zhang and Du (2016)
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10.3.1.1  Local Variance
LV roots in the idea of the relationship between the spatial structure of images, the 
size of the objects in the real world, and pixel resolution (Woodcock & Strahler, 1987). 
Woodcock and Strahler (1987) first calculated the value of the standard deviation (SD) 
in a small convolutional window (3 × 3), and then computed the mean of these values 
over the whole image. Accordingly, the obtained value is an indicator of the local 
variance in the image (Drǎguţ et al., 2010). Kim et al. (2008) derived the SD from 
each segmented object instead of a moving window, and the value directly measures 
local variance of an object. The mean SD of all objects in the image is denoted as LV 
(Equation 10.1) (Drǎguţ et al., 2010)

	
LV

SD

N
l

i

N

l i

l

l

= =∑ 1
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(10.1)

where l refers to the lth scale level in the MRS results, and LVl denotes the LV at this 
level; Nl is the number of segmented objects at the lth scale level, and SDl,j represents 
the standard deviation of the ith object. It is assumed that with the scale growing, 
the size of a segment is getting larger, and its SD increases continuously up to the 
point that it matches the object in the real world. Accordingly, the break point of LV 
indicates the optimal scale. To detect the break point, Drǎguţ et al. (2010) then defined 
the rate of change (ROC) of LV (Equation 10.2) to access the dynamics of LV from 
one scale level to another, and hypothesized that the most obvious peaks in the ROC 
curve indicate the optimal segmentation scales

	
ROC

LV LV

LV
l

l l

l

=
−

×+1 100%
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This method was tested on the study area situated in Beijing (Figure 10.6), and the 
dynamics of changes in LV and ROC are reported in Figure 10.7, where LV increases 
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FIGURE 10.7  Dynamics of changes in LV and ROC with increasing scale parameter. Three 
selected scales are indicated by dotted vertical lines.
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with the increasing scales while ROC follows an opposite trend. The scales of 39, 
50, and 66 were manually selected as the optimal scale levels. At a scale of 39, most 
buildings are well segmented (Figure 10.8b). The shadow is best segmented at a 
scale of 50 (Figure 10.8c) because the shadow segments are easily merged with the 
dark trees or buildings at coarser scales. A scale of 66 generates accurate segments 
for soil and water (Figure 10.8d), while they are oversegmented at the finer scales. 
Therefore, ROC is an indicator for measuring the amount of change in LV from one 
level to another, and it is important to select the optimal scale level.

10.3.1.2  Global Score
Johnson and Xie (2011) proposed that scale selections should not consider only 
intrasegment heterogeneity, but also intersegment similarity. They gave a definition 
of a good segmentation that should meet four conditions: (1) segments should be 
uniform and homogeneous, (2) segments are significantly different from neighboring 
regions, (3) segments have a simple interior without many holes, and (4) segment 
boundaries should be simple, not ragged, and spatially accurate. However, most 
unsupervised evaluation methods solely involve intrasegment heterogeneity and 
ignore intersegment similarity measurements for each segment (Zhang et al., 2008). 
Accordingly, Zhang et al. (2008) proposed an indicator for scale selection, GS, which 
takes into consideration both intrasegment heterogeneity and intersegment similarity.

First, the intrasegment heterogeneity is calculated by an area-weighted variance 
(Equation 10.3)
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(a) (b)

(c) (d)

FIGURE 10.8  (a) Subimage of the study area, and three segmentation results based on 
different scale parameters of (b) 39, (c) 50, and (d) 66.
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Similar to Equation 10.1, l also represents the lth scale level in multiscale 
segmentation results, while WVl denotes the area-weighted variance at this level; Nl 
is the number of segmented objects at the lth scale level; and al,i and SDl,i represent 
the area and the standard deviation of the ith object, respectively. Parameter WVl  is 
used for the global calculation so that large segments contribute more to the global 
score than small ones.

On the other hand, the intersegment similarity is measured by Moran’s I index, a 
spatial autocorrelation metric that measures, on average, how similar a region is to 
its neighbors (Fotheringham et al., 2000), which was found as a good indicator of 
segmentation quality in previous segmentation evaluation studies (Espindola et al., 
2006; Kim et al. 2008). For this study, Moran’s I at the lth scale level (MIl) was 
calculated using Equation 10.4

	

MI
N w y y y y

y y
l

l
i

N

j

N

ij
l

i
l l

j
l l

i

N

i
l l

l l

l
=

× × − × −

− ×

= =

=

∑ ∑
∑ ∑

1 1

1

2

( ) ( )

( )
ii j

ij
lw

≠∑





 	

(10.4)

yi
l refers to the feature value of the ith object at the lth scale level, and y l is the mean 

value in the image. Each weight wij
l measures the spatial adjacency degree between 

the ith and jth objects. Accordingly, only neighboring objects are considered, with 
wij

l = 1; otherwise wij
l = 0. In general, low MIl values indicate small intersegment 

similarity, which is desirable for an image segmentation. Both WVl and MIl are 
rescaled into the same range [0−1] by normalization. The GS is then calculated based 
on the two normalized indicators: GS WV MIl l l= + . A low GSl values corresponds 
to good segmentation results.

Five scales were selected to segment the WordView-2 image in the Beijing urban 
area (Figure 10.9a), and their corresponding GS values were calculated. The optimal 
segmentation result (Figure 10.9b) was selected among multiscale segmentations 

(a) (b)

FIGURE 10.9  Comparison of (a) original WordView-2 image and (b) its segmentation results 
using the scale parameter of 40.
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based on the GS curve (Figure 10.10). As shown in Figure 10.10, the image 
segmentation performed best at a scale of 40 and produced the lowest GS (0.9097). 
At the scale of 40, objects are, on average, most homogeneous internally and most 
different from their neighbors, and thus according to the GS value, 40 is the optimal 
scale for segmenting this image. In addition, the scales of 50 and 60 also produced 
good segmentation results with pretty high accuracies.

10.3.2 S upervised Scale Selection

The unsupervised selection methods mainly consider local heterogeneities, but they 
totally ignore a category’s influence on scale selection. Accordingly, supervised 
methods are proposed to resolve this issue. The supervised scale selections fall into 
three types: classification, boundary, and feature based. They all aim to measure the 
discrepancy between segmentation results and reference objects, which can directly 
reveal segmentation quality. If the discrepancy is small, the segmentation quality is 
high. In an ideal case, if no discrepancy exists, the segmented regions are identical 
to the reference objects (Zhang et al., 2015a).

10.3.2.1  Selection Based on Classification Accuracy
Semantic discrepancies between generated objects and references are very important 
to measure the object quality (Zhang & Du, 2016). Accordingly, object classification 
results at diverse scales are first used to quantitatively evaluate multiscale segmentation 
results, and then to select the optimal scale for each category.

Object classifications are conducted at different scales, and the same training and 
testing samples are used for all scale layers. These samples are first collected per pixel, 
and then aggregated with the increase of scales. For example, a large-scale object may 
contain several training samples, and these samples can belong to different classes; 
while this object will be labeled as the class with the largest area ratio. Using these 
samples and machine learning methods (e.g., support vector machine, random forest 
(RF), and artificial neural network), object classification results and accuracies at 
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FIGURE 10.10  Dynamics of changes in GS with the increase of the scale parameter.
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diverse scales can be obtained (Figure 10.11). Given an object category ci, its producer’s 
accuracy (Powers, 2011) at the lth scale level PAc

l
i  is employed to measure the ci’s 

segmentation quality at this scale. Accordingly, the optimal scale of ci is defined 
as the one with the largest accuracy, i.e., OptScale PA l Lc l c

l
i i= ≤ ≤argmax { | }1 . For 

all categories, the overall accuracy at the lth scale level OAl measures the average 
quality of all objects at this scale; thus, the optimal scale of all categories is defined 
as OptScale OAl L l= ≤argmax { }.

In Zhang and Du (2016), this strategy was used to select the optimal scale 
parameter for the study area (Figure 10.12). Here, the satellite image is classified 
into six categories using random forest classifier, and their accuracies are shown in 
Table 10.4, and their overall accuracies at multiple scales are reported in Figure 10.13. 
By reference to the classification accuracy, the scale of 60 produced the most accurate 
classification results, and thus it is the optimal scale for GEOBIA in this study area. 
In detail, the roads are well segmented at scale 70, and the soils at scale 50, indicating 
that the different geographic entities have different intrinsic scales and should be 
segmented at different scales. In conclusion, the scale-selection method-based 
classification accuracy considers a category’s impact, and can select the optimal scale 
for each category, but it ignores local heterogeneities within categories, so the selected 
scales cannot totally resolve the three influencing factors.

10.3.2.2  Selection Based on Spatial Overlap
Apart from semantic discrepancy, spatial discrepancy between segments and object 
references is also important to measure the qualities of generated objects. Accordingly, 
spatial overlapping degrees between segments and object references are presented 
to evaluate segmentation results, and the scale with the largest overlapping degree 
will be selected as the optimal scale from multiresolution segmentations (Zhang 
et al., 2015b). This kind of method is mainly divided into two steps, i.e., matching 
and calculating discrepancy. First, segments are matched to object references by 

VHR image

Scale level ≤ L

No
Yes

Scale selection

Object segmentation at the
first scale level

Scale level = scale level + 1

Classification accuracy
Testing
samples

Training
samples

andObject classification at the
current scale level

Object segmentation at the
current scale

FIGURE 10.11  Scale selection based on object classification accuracies at multiple scales.
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boundary matching or region overlapping (Clinton et al., 2010). Then the discrepancy 
measures are calculated on an edge versus non-edge basis or by prioritizing the edge 
pixels according to their distance to the reference (Estrada & Jepson, 2009; Albrecht, 
2010). However, in most cases, especially in remote sensing image segmentation, the 
region overlapping strategy is more often used (Witharana & Civco, 2014).

(a) (b)(Scale 30) (c)(Scale 40)

(e)(Scale 60)(d)(Scale 50)

Shadow Water Vegetation Soil Building Road

(f )(Scale 40)

FIGURE 10.12  Object classification results of the (a) WorldView-2 image at (b–f) five scales. 
(From Zhang, X., & Du, S. 2016. Remote Sensing of Environment, 178, 172–190.)

TABLE 10.4
Per-Category and Overall Classification Accuracies at Different 
Segmentation Scales

Per-Category 
Accuracy (%) Scale 30 Scale 40 Scale 50 Scale 60 Scale 70

Selfhood 
Scale

Shadow 81.2 81.2 83.1 83.1 79.0 85.6
Water 96.4 95.6 95.6 90.6 86.9 95.0

Vegetation 79.8 81.7 85.3 86.7 85.4 93.1
Soil 61.0 70.1 80.7 76.2 74.3 86.7
Building 80.6 75.3 81.3 82.5 80.9 92.5
Road 71.3 71.3 76.7 81.4 83.3 89.4
Overall accuracy (%) 82.5 81.7 84.6 84.8 82.2 92.4

Source: Zhang, X., & Du, S. 2016. Remote Sensing of Environment, 178, 172–190.
Note: The bold numbers refer to the largest accuracy for each category, and the underlined numbers rep-

resent the second largest accuracy.
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Zhang et al. (2015a) proposed region-based precision and recall to measure the 
boundary discrepancy between segmented regions and reference objects. The two 
indicators are calculated based on region overlapping and presented as a point 
or a curve in a precision-recall space. First, precision is calculated based on the 
reference-to-segment overlapping. In detail, the reference objects are matched to the 
segments, and the segment having the largest overlapping area with the reference 
object is identified. Given the segmentation result at the lth scale level Sl, i.e., Nl segments 
{ , , , }S S Sl l

N
l
l1 2 … , and the reference R with M objects { , , , }R R RM1 2 … , the precision measure is 

calculated by matching { | }R i Mi 1≤ ≤  to each segment S j Nj
l

l( )1≤ ≤ . For calculating 
the precision at the lth scale level (i.e., precisionl, Equation 10.5), the matched 
reference object (Rmax) of Sj

l  should be first identified, where Rmax has the largest 
overlapping area with Sj

l  (Figure 10.14), and | * | measures the area of the region.

�e matched segment Rmax

Segment Sl
j

Sl
j ∩ Rmax

FIGURE 10.14  Relationship between the segment Sj
l  and the matched reference object Rmax.

30
80

80.5
81

81.5
82

82.5
83

83.5
84

84.5
85

85.5

40 50
Scale

60 70

O
ve

ra
ll 

ac
cu

ra
cy

 (%
)

FIGURE 10.13  Overall accuracies of object classification results at multiple scales.
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Similarly, recall at the lth scale level, recalll, can be measured by matching 
{ | }S j Nj

l
l1≤ ≤  to each segment R i Mi( )1≤ ≤  (Equation 10.6), where the matched 

segment (Sl
max) of Ri is first identified (Figure 10.15).
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In practice, a limited number of reference objects are manually delineated, rather 
than the whole imagery, and the precision and recall values calculated based on these 
reference objects are used to evaluate the accuracies of different scale segmentation 
results. Generally, large precision and recall values indicate high segmentation quality. 
In addition, the two indicators can measure both over- and undersegmentations. When 
an image is mostly oversegmented at the lth scale level, the precisionl is large but recalll 
decreases to incur the penalty. In an extreme oversegmentation case with each pixel 
being a segment, the precisionl is 1 and the recalll is as low as M/Npixel, where Npixel is the 
number of pixels in the image. In contrast, when an image is mostly undersegmented, 
the recalll is high but the precisionl decreases. In an extreme undersegmentation case 
in which the entire image is viewed as a segment, the recalll is 1 and the precisionl 
decreases to R Nlargest pixel/ , where Rlargest represents the largest reference object.

Based on the recall and precision, several indicators are presented to evaluate the lth 
scale segmentation results including Suml, EDl, ED′l, and Fl: Suml l l= +precision recall ,  

EDl l l= +precision recall2 2 , ED l l l
′ = − + −( ) ( )1 12 2precision recall  (Clinton 

et al., 2010), and Fl is defined as
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�e matched segment Sl
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Reference object Ri
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FIGURE 10.15  Relationship between the reference object Ri and its matched segment Sl
max.
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where the weight parameter α is usually set as 0.5. Large Suml, EDl, and Fl values 
and a small ED′l value indicate high segmentation quality.

The presented precision and recall can be used to measure the segmentation 
accuracy, but they cannot evaluate over- or undersegmentations directly. Accordingly, 
Guo and Du (2016) used three other indicators: OSl for oversegmentation (Equation 
10.8), USl for undersegmentation (Equation 10.9), and their combination RMSl 
(Equation 10.10).
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Both OSl and USl can measure how image segment Sj
l  fits with the corresponding 

reference object Rmax, and RMSl integrates the two measurements into one. In the ideal 
case, OSl = 0, USl = 0, and RMSl = 0 means the best segmentation, which can hardly 
be achieved. In practice, the image is either over- or undersegmented, and small 
values of the indicators refer to accurate segmentation results. Guo and Du (2016) 
used the three indicators to select the optimal scales for segmenting four kinds of 
buildings (Figure 10.16). As reported in Table 10.5, as segmentation scales increase, 

(a) (b)

FIGURE 10.16  (a) QuickBird image and (b) the reference building objects, which are 
classified into four categories. (From Guo, Z., & Du, S. 2016. GIScience & Remote Sensing, 
54(1), 38–63.)
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the values of USl increase, while the values of OSl decrease. This result is consistent 
with our theory that a small segmentation scale will result in oversegmentation 
and a large one will result in undersegmentation. The RMSl values have a different 
trend, that is, as scales increase, the RMSl values first decrease and then increase. 
The optimal segmentation scales are selected at the break points with lowest RMSl 
values. Therefore, the optimal scales for single apartments, multifunction buildings, 
tall buildings, and shantytowns are selected as 100, 120, 140, and 180, respectively.

Accordingly, this method is effective to select the optimal scale for each reference 
object, and the selected scales can avoid the three influencing factors.

10.3.2.3  Selection Based on Feature Importance
Recently, a novel scale-selection method was proposed based on feature evaluation. 
In this strategy, scales are scored and ranked by reference to feature importance, and 
the optimal scale with the largest feature importance will be selected from multiple 
scales (Zhang & Du, 2016).

Zhang and Du (2016) employed an RF to measure feature importance, where 
feature importance refers to the contribution degree of a feature to classification 

TABLE 10.5
Quantitative Evaluation on Multiscale Segmentations for Four Kinds of 
Buildings

Scale
(l)

Single Apartment Multifunction Building Tall Building Shanty Town

OSl USl RMSl OSl USl RMSl OSl USl RMSl OSl USl RMSl

30 0.833 0.153 0.61 0.938 0.127 0.678 0.921 0.13 0.667 0.982 0.068 0.701

40 0.746 0.176 0.558 0.909 0.145 0.661 0.882 0.147 0.643 0.972 0.083 0.696

50 0.67 0.195 0.516 0.879 0.156 0.642 0.842 0.175 0.623 0.961 0.096 0.69

60 0.599 0.221 0.482 0.85 0.167 0.625 0.803 0.197 0.605 0.95 0.103 0.683

70 0.538 0.249 0.458 0.819 0.182 0.61 0.765 0.216 0.589 0.94 0.121 0.678

80 0.483 0.285 0.444 0.789 0.195 0.594 0.724 0.256 0.579 0.927 0.13 0.672

90 0.438 0.317 0.435 0.761 0.21 0.583 0.687 0.288 0.572 0.904 0.149 0.661

100 0.404 0.353 0.434 0.728 0.236 0.573 0.65 0.327 0.568 0.891 0.156 0.653

110 0.374 0.388 0.438 0.697 0.263 0.566 0.613 0.355 0.56 0.877 0.16 0.645

120 0.349 0.425 0.446 0.666 0.287 0.556 0.584 0.377 0.555 0.858 0.179 0.641

130 0.32 0.472 0.458 0.633 0.321 0.557 0.559 0.404 0.553 0.848 0.194 0.639

140 0.299 0.514 0.472 0.601 0.356 0.559 0.531 0.43 0.551 0.832 0.206 0.632

150 0.284 0.554 0.489 0.575 0.394 0.559 0.506 0.455 0.555 0.801 0.235 0.623

160 0.269 0.588 0.503 0.545 0.427 0.56 0.48 0.481 0.554 0.772 0.262 0.615

170 0.255 0.623 0.518 0.525 0.449 0.562 0.461 0.503 0.557 0.749 0.292 0.612

180 0.244 0.65 0.531 0.5 0.488 0.566 0.44 0.52 0.554 0.731 0.317 0.61
190 0.234 0.673 0.541 0.471 0.516 0.566 0.419 0.544 0.555 0.725 0.326 0.611

200 0.223 0.703 0.555 0.445 0.548 0.57 0.402 0.574 0.564 0.705 0.348 0.612

Source:	 Guo, Z., & Du, S. 2016. GIScience & Remote Sensing, 54(1), 38–63.

Note:	 The optimal scale for each building type is bold.
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(Figure 10.17). RF is an assembled classifier based on decision trees (Friedl & 
Brodley, 1997) and is skilled at measuring feature importance (Breiman, 2001). 
However, it ignores local heterogeneity during feature evaluation, which is an 
important influencing factor on scale. Accordingly, Zhang and Du (2016) advanced 
RF and proposed a local feature evaluation method named local Gini importance.

For this method, the original VHR image is first segmented at multiple scales 
( , , , )Scale Scale ScaleL1 2 …  using MRS (Baatz & Schäpe, 2000). Then spectral, 
geometrical, and texture features are extracted at each scale (Ramakant & Ramesh, 
1980). For each image object, the features are assigned to its covering pixels, leading 
to each pixel being able to be characterized by M object features at each scale. 
Accordingly, a pixel has L M( ) ( )scale features/scale×  features in the stacked L-scale 
image.

As demonstrated previously, the optimal scales can be learned from the L scales 
(Scale ScaleL1,.., ) based on the importance of L × M features. These features, however, 
are high dimension, redundant, and greatly correlated. Accordingly, the random forest 
algorithm, skilled in analyzing high-dimension and correlated features, is chosen to 
evaluate feature importance and further learn the optimal scales. Random forest is 
trained by supervised samples and is able to measure feature importance using the 
Gini importance approach (Breiman, 2001; Pal, 2005). Gini importance accumulates 
the decreases in Gini coefficients caused by a feature in all decision trees. The 
more Gini decrease a feature causes, the more important it is. Since we want to 
extract optimal scales considering local heterogeneity, a local Gini importance is 
developed to measure the feature importance for pixels instead of the whole image. 
When classifying a pixel Pixelp using random forest, its visited nodes in all decision 
trees are labeled (Figure 10.17). Each node stores the used feature and the decrease 
in Gini, which measures the importance of the used feature for classifying Pixelp. 
Accordingly, the importance of the jth feature FeatureImp Pixelj p( ) ( )1≤ ≤ ×j L M  
can be measured by accumulating Gini decreases of the jth feature in these visited 
nodes (Figure 10.17). Then, the importance of the lth scale ( )1≤ ≤l L  for classifying 
Pixelp, i.e., ScaleImpl(Pixelp), is the sum of the importance of all the features at the 
lth scale (Equation 10.11).

	
ScaleImp Pixel FeatureImp Pixel j Scalel p j p l

j
( ) ( )( )= ∈∑ 	

(10.11)
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FIGURE 10.17  Procedure of feature-based scale selection using random forest. (From 
Zhang, X., & Du, S. 2016. Remote Sensing of Environment, 178, 172–190.)
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Among the L scales, the most important scale with the largest ScaleImpl(Pixelp) 
is regarded as the optimal scale of Pixelp and denoted by SelfhoodScale(Pixelp) 
(Equation 10.12).

	 SelfhoodScale Pixel ScaleImp Pixelp l
L

l p( ) argmax ( )= =1 	 (10.12)

Zhang and Du (2016) used this method to select the optimal scale for each spatial 
unit of the VHR image in Beijing, and the selection result is shown in Figure 10.18.

The optimal scales change with categories (Table 10.6) according to training 
samples. For example, 69.2% of apartment buildings fit the scale of 40 because 
most buildings are oversegmented at scale 30, but undersegmented at scale 
50. Accordingly, scale 40 is the optimal segmentation scale for segmenting an 
apartment building. Figure 10.18 shows that optimal scales not only change from 
category to category, but also vary among individual objects. For example, some 
road objects use scale 60 as their optimal scales, but the others choose the scale 

(a) (b)

Optimal
scales

30

40

50

60

70

FIGURE 10.18  (a) Original WorldView-2 image and (b) the selected optimal scales. (From 
Zhang, X., & Du, S. 2016. Remote Sensing of Environment, 178, 172–190.)

TABLE 10.6
Proportions of Different Optimal Scales for Each Category

Proportion (%) Scale 30 Scale 40 Scale 50 Scale 60 Scale 70

Shadow 0.2 26.2 53.8 11.7 8.1

Water 0 0.9 1.1 96.7 1.3

Vegetation 3.0 6.6 57.2 28.3 4.9

Soil 0.4 9.3 40.7 41.2 8.4

Building 16.7 69.2 12.1 1.2 0.8

Road 0.9 15.9 18.4 25.3 39.5

Note:	 The bold numbers represent the largest proportions for each category.
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of 70, because the two kinds of roads have different conditions considering the 
distributions of moving cars. In addition, diverse optimal scales (30, 40, 50, and 
60) are employed by building objects because buildings have different contrasts 
with their surroundings.

In summary, the feature-based method considers both categories and local 
heterogeneities, and is effective to select optimal scales for objects.

10.4  LATEST ADVANCES OF PRESEGMENTATION 
SCALE ESTIMATION

The past several years have witnessed the development of scale-selection methods in 
two aspects. First, the concept of segmentation scale has been generalized instead of 
only being a parameter in MRS, and it also appears in other segmentation methods, 
e.g., mean shift. Second, presegmentation scale estimation is proposed to select the 
scale by using spatial statics and it does not depend on multiscale segmentation results.

Ming et al. (2016b) generalized the commonly used segmentation scale parameters 
into three general aspects: spatial parameter hs (spatial distance between classes 
or range of spatial correlation), area parameter M (the area or pixel number of the 
minimum meaningful object), and attribute/spectral parameter hr (attribute difference 
between classes). Aiming to estimate the three scale parameters, Ming et al. (2012) 
proposed a spatial statistics-based scale estimation method for GEOBIA. The main 
idea of this proposed method is to use the average LV graph (Ming et al., 2015) or 
the semivariogram (Ming et al., 2012) to estimate the optimal hs. Next, the estimation 
of the optimal M is based on simple geometric computation and the optimal hr is 
based on the LV histogram. Taking mean shift segmentations as an example, Ming 
et al. (2015) used classical geospatial and spectral statistics to estimate the three 
parameters hs, hr, and M in GEOBIA. Figure 10.19 demonstrates the workflow of 
scale estimation based on the LV (Woodcock & Strahler, 1987) and spectral statistical 
methods, where ( )I xy represents an image with x rows and y columns, i indicates the 
repeating times of the computation, and ALV refers to the average LV value.

Inputing
image
(I)xy

For i = 1 to n;
i++;

hsi = 2i + 1


e first peak
of the

histogram
→ optimal hr

Range(ALVi)
→ [hsi/2]→
optimal hs

[Optimal hs]2/2
or

[Optimal hs]2/4

 → Optimal M

Statistic
of the

LV(image)

Computing the LV
of (I)xy with

window size of
hsi: (LVi)xy

Computing
the ALV of

(LVi)xy:
ALVi

FIGURE 10.19  Workflow of estimating the optimal scale parameters.
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As shown in Figure 10.20, computing the range of spatial correlation is the 
key foundation of the scale estimation. Ming et al. (2015) proposed that the selection of 
the optimal scale parameters could be achieved by statistical estimation considering 
spatial autocorrelation of objects. The optimal scale is essentially the critical point at 
which the spatial dependence exists or does not exist. The critical point just reflects 
the meaning of the spatial statistical term range. Figure 10.20 illustrates the schematic 
diagrams for computing semivariance and local variance to get the range. For more 
details on the computing formulae, please refer to Ming et al. (2012) and Ming et al. 
(2010). Semivariance (semivariogram) is highly recommended, as it considers the 
anisotropy of geographic objects.

Ming et al. (2015) used IKONOS, QuickBird, and aerial panchromatic images 
as the experimental data and employed mean shift segmentation method to verify 
the effectiveness and feasibility of the proposed method. Experiments based on 
quantitative multiscale segmentation evaluation testified to the validity of this 
method. Further, from the view of application, Ming et  al. (2016a) combined 
this method in GEOBIA to extract cropland from a SPOT-5 satellite image. The 
experimental results indicated that the estimated scale parameters can generate 
objects with high accuracy and completeness. Ma et  al. (2017) analyzed the 
relationship between MRS and spatial statistical characteristics, and then used 
the spatial statistical method to estimate the scale parameters in multiscale 
segmentation. The classification and the accuracy assessment results showed that 
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FIGURE 10.20  Schematic diagrams for the computation of (a) semivariance and (b) local 
variance.
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the estimated scale is basically closed to the optimal scale in MRS-based multiscale 
segmentation. In addition, it is an essentially data-driven method that requires 
almost no prior knowledge; thus, it can enhance the efficiency and automatic degree 
of GEOBIA. However, this method is more suitable for local detailed information 
extraction or small areas. When the image area is large, scale estimation based on 
spatial statistics within the subregion is feasible.

This chapter used this method to extract urban information from the WorldView-2 
VHR image. Because the dominant categories within this image are building and 
vegetation, two subimages shown in Figure 10.21 were cut from the original image 
and then used as the basis of scale estimation.

Considering that there is little difference between the semivariogram and 
ALvariogram (Ming et  al., 2015), this study computes the semivariances of the 
experimental image and then determines the spatial domain parameter hs. Further, 
attribute domain parameter hr can be estimated by the proposed method. The essence 
of hr is spectral heterogeneity, so it approximates or even equals the meaning of 
scale parameter (not considering the shape heterogeneity). Figure 10.22 demonstrates 
the increase of semivariance of these two subimages, and the hs values for the two 
subimages are both 7 pixels.

Accordingly, the histograms of the LV image (with the estimated hr as the window 
size) are shown in Figure 10.23, by which the estimated spectral parameters are 
respectively 68 and 53 for the images in Figure 10.21a and b.

When not considering the shape heterogeneity, the meaning of the estimated 
spectral parameter hs is close to the term scale parameter in multiresolution 
segmentation in eCognition software. Compared with Table 10.6, the estimated scale 
parameter by spatial statistics is 53 for vegetation, which basically approximates the 
selected optimal scale 50 of vegetation. For buildings, the estimated scale parameter 
is 68, which somewhat differs from the selected scale in Section 10.3.2.3, i.e., 40. It 

(a) (b)

FIGURE 10.21  Two example areas of WorldView-2 image. (a) is mainly composed of 
buildings, and (b) is composed of vegetation.

(c) ketabton.com: The Digital Library



222 High Spatial Resolution Remote Sensing

is because the image in Figure 10.21a is composed of diverse buildings that are very 
heterogeneous according to their spectral variances; thus, considering only local 
heterogeneity a large scale of 68 can be estimated. However, the large estimated 
scale will mix the building objects with their surroundings, while the selected 
small scale can avoid this issue. Second, the per-category proportions of different 
selfhood scales are statistically computed based on the number of image objects 
and they do not consider the size of the image object, which means the weight of the 
object size is ignored. However, the estimated scale parameter by spatial statistics 
is computed based on pixels. Third, the selfhood scales are based on samples, 
however the sample selection is inevitably influenced by personal subjectivity, and 
whether the selected samples cover all selfhood or whether they could reflect the 
probability distribution of selfhood scale should be further discussed. However, 
the proposed scale parameter estimation in this section is based on global spatial 
statistics and it is a data-driven method without human intervention. Fourth, the 
estimated scale parameter hs does not contain the impact of shape heterogeneity, 
however the selfhood scale method does, which is also inevitable. Accordingly, it 
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FIGURE 10.22  Semivariance-based spatial parameter estimation results of Figure 10.21a 
and b.
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is explainable and acceptable that two different methods based on totally different 
ideas get different results.

10.5  DISCUSSION

This chapter reviews many scale-selection methods, including supervised and 
unsupervised ones. In addition, we compared these methods based on the same 
image data (Figure 10.6). Accordingly, the pros and cons of different scale-selection 
methods are discussed in this section.

As reported in Table 10.7, unsupervised scale selections including LV and GS 
need little manual intervention, and thus are much more efficient than supervised 
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FIGURE 10.23  LV histogram-based spectral parameter estimation results of images in 
Figure 10.21a and b.

TABLE 10.7
Pros and Cons of Different Scale-Selection Methods

Method Output Advantages Disadvantages

LV and GS Optimal scale for the 
whole image

Efficient, considers local 
heterogeneity, little manual 
intervention

Ignores category’s impacts on 
scales

Classification-
based selection

Optimal scale for each 
category

Considers object categories Ignores local heterogeneity of 
scales, requiring training and 
testing samples

Boundary-based 
selection

Optimal scales for the 
objects with reference 
boundaries

Avoids three influencing 
factors on segmentation 
scales

Requires labor and time costs, 
mainly deals with the objects 
with reference boundary

Feature-based 
selection

Optimal scale for each 
object or pixel

Considers three influencing 
factors on scales

Requires a finite number of 
training samples

Spatial 
statistics-based 
estimation

Theoretically optimal 
scale for the whole 
image

Theoretically supported, 
efficient, data driven, 
without manual intervention

Only suitable for local detailed 
information extraction or 
image with small area
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ones. They mainly consider local heterogeneity’s impact on segmentation scales, but 
ignore another important factor of the object category. Supervised scale selections 
based on segmented objects need referenced polygons, so they are difficult to use in 
practical applications.

On the contrary, supervised selections based on classification accuracies take 
interesting categories into consideration, but ignore local heterogeneities. These 
methods need training and testing samples, and can select optimal scales for different 
categories. However, the impact caused by dynamic samples cannot be avoid, which 
is the defect of this method. Scale selections based on spatial overlap are able to select 
the optimal scales for the objects with reference boundaries and avoid three influencing 
factors. However, spatial-overlap-based scale selections have three limitations: (1) 
they are weak for dealing with the objects having no reference boundary, (2) the 
uncertainty on reference boundaries caused by different interpreters will impact 
selection results, and (3) the delineating of reference boundaries requires much labor 
and time cost. Finally, feature-based scale selection is proposed, which considers all 
three influencing factors. First, the surrounding contrast is encoded into high-level 
object features because each high-level object covers several neighboring objects and 
its texture features characterize the local contrasts among covered objects. Second, 
the inherent heterogeneity is measured by the low-level object features because the 
low-level objects are the inherent components of objects. Accordingly, the differences 
between the low-level object features can measure the inherent heterogeneity of an 
object. Third, category determines the visited nodes of the studied pixel in the random 
forest (Figure 10.17), and further impacts the local Gini importance for diverse scales. 
The feature-based scale selection needs a finite number of training samples, but it is 
still more efficient than boundary-based methods.

In addition, the scale estimation based on spatial statistics is theoretically 
supported by mathematics, spatial statistics, and pattern recognition theories. It is 
an essentially data-driven method that requires almost no prior knowledge. It can 
enhance the efficiency and automatic degree of GEOBIA; however, it is only suitable 
for local detailed information extraction or the image area will be small. In practical 
application, the subregion should be partitioned before scale selection.

According to the experimental results, we find that different scale-selection 
methods can produce different optimal scales even for the same data, for example, 
the scale 60 is selected by the feature- and classification-based methods, while 
40 is selected by GS method. This is because these methods consider different 
aspects of influencing factors to scales and they use different criterions to evaluate 
segmentation results. Which method should be used depends on our application 
purpose and the availability of the used data set. For example, if we want to 
investigate the semantic proportions of land covers, we should use the selection 
method based on classification accuracy; if we want to map the land covers with 
accurate boundaries, the spatial-overlap method will be applied; if we want to 
extract the optimal features to characterize objects, the feature-based method is 
the best choice; if we just want to have an overall understanding of the land cover 
objects in the study area, we can use the unsupervised selections; and if we do 
not even have time to generate multiscale segmentation results, we should use the 
presegmentation scale estimation method.

(c) ketabton.com: The Digital Library



225Segmentation Scale Selection in Geographic Object-Based Image Analysis

10.6  CONCLUSIONS AND FUTURE DIRECTIONS

The scale issue has plagued GEOBIA studies for decades, and thus scale-selection 
methods are presented to resolve this issue. As discussed in the introduction, there are 
three influencing factors on segmentation scales, i.e., category, surrounding contrast, 
and internal heterogeneity, and they should be totally considered while selecting or 
estimating the optimal scales.

Existing studies on segmentation scales can be divided into two parts: 
postsegmentation scale selection and presegmentation estimation. This chapter gives 
a comprehensive review of these techniques, and four conclusions have been drawn:

•	 Generally, unsupervised selections are much more efficient than supervised 
ones because unsupervised selections do not need any samples; while 
supervised methods are more effective to select optimal scales than 
unsupervised ones because supervised methods use prior information based 
on human interpretation.

•	 Among these methods, the selection method based on spatial overlap is the 
most widely used, but is also the most time consuming; the feature-based 
method is the most effective for selecting the optimal scales for objects.

•	 A recent scale-estimation method based on spatial statistics was proposed. 
It is a fully data-driven method, and needs little manual intervention, but 
it is not suitable for images with complex landscapes or with large extents.

•	 Every scale-selection or scale-estimation method has unique advantages and 
limitations (Table 10.7), and which method to use mainly depends on our 
application purposes.

Despite the good performances of scale-selection methods, several issues remain 
to be studied further. First, all postsegmentation scale selections essentially aim to 
choose the optimal scale level from multiscale segmentations, but the multiscales are 
set manually; thus, there are two issues. How many scales will be employed? What is 
the interval between scales? Accordingly, an automatic method is required to resolve 
the two issues. Second, different data sources, study areas, and methods used may 
lead to different selected scales. It is hard to determine whether the geographic or data 
difference results in the scale differences. Third, the parameters used in scale selection 
will impact the selection results; thus, appropriate parameters should be chosen for 
improving the application accuracies of selected scales. Fourth, the scale-selection 
results (Table 10.7) are totally generated based on multiscale segmentation results, and 
thus they are discrete, but they should be continuous because the scales of geographic 
objects change continuously. Accordingly, a learning mechanism of continuous scales 
instead of the scale-selection method should be developed in the future.
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11 Computer Vision 
Methodologies for 
Automated Processing 
of Camera Trap Data
A Technological Review

Joshua Seltzer, Michael Guerzhoy, 
and Monika Havelka

11.1  INTRODUCTION TO ANIMAL POPULATION MONITORING

Beneath the dense canopies of the Amazon rainforest, traditional remote sensing 
technologies such as aerial photography fail to capture the abundance of life. In lieu 
of such techniques, professional and amateur enthusiasts alike have begun using 
camera trap systems to monitor populations, which use hidden and nonintrusive 
cameras (triggered by motion and/or heat) placed strategically around natural parks 
and research stations. Camera traps provide unbiased and nonartificial glances into 
the lives of wild animals, which is highly conducive to ethological and populational 
studies. While camera trap technology has advanced significantly in recent years, 
methods of managing and analyzing the collected data have been largely bottlenecked 
by existing practices. The quality and quantity of photos and metadata have increased 
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dramatically with the advent of digital cameras—as well as advances in battery 
life—but the same advances have not occurred in managing and analyzing data 
from that rich source (Fegraus et al., 2011). Age-old methodologies have undergone 
only incremental improvements, rather than the revolutionary advances that so often 
drive progress.

Although some theoretical groundwork has been laid in the area of modeling 
the dynamics of animal populations, little work has focused on the integration of 
such models with the rapidly growing field of computer vision in order to automate 
the process. In particular, this chapter will examine population density models and 
computer vision techniques in order to evaluate existing and potential performance in 
the context of camera traps. Successful integration between camera traps, computer 
vision, and population modeling could be tested easily for accuracy against existing 
data sets (which have been compiled manually through observational data); and 
if proven to work could have lasting ramifications for research and methodology. 
Ultimately, such a system could provide insight into many ongoing questions in 
conservation biology. In addition to revealing ethological insights into the behavior of 
endangered species, automatic recognition of individuals and species for the purpose 
of estimating population densities could provide both long-term and real-time 
monitoring of threatened groups. Such information is invaluable to many fields of 
biology and conservation policies, and an effective software solution for automating 
recognition processes could be used to globally analyze animal populations, given 
the growing use of camera trap systems. In an age of fragmenting ecosystems, ever-
increasing insularization, and rapid extinction, it is all the more important to act with 
haste.

11.2  CURRENT PRACTICES

Although there is great diversity of camera trap setups, situated in a wide range 
of habitats, the methodology for analyzing collected data is fairly consistent across 
each research station. While there is a range, to some extent, in the sophistication 
of their data management—such as the software used for organizing and sorting the 
photos—central to each system is the need for a human to manually tag each photo 
with the type of species present and other relevant data (Sundaresan et al., 2011). 
Even descriptions of state-of-the-art systems, e.g., Zaragozí et al. (2015), emphasize 
a need for modernizing data management, yet still focus on optimizing the speed at 
which humans can manually classify (label) the photos. The data may be processed 
by a small group of experts, or crowdsourced from a larger pool, but in either case it 
presents a significant financial cost and is very time consuming.

At Tiputini Biodiversity Station (TBS), a remote field research center in the 
Yasuní Biosphere Reserve of the Ecuadorian Amazon, camera traps have been an 
ongoing project since the days of film cameras. The surrounding park is a hot spot 
of biodiversity. Over the last 10 years, digital cameras have enabled the capture of 
more than 100,000 photos and videos of around 70 wild species, some of which are 
rare or endangered (D. Mosquera, personal communication, June 2016). Labeling 
such a massive collection is immensely laborious; and as photo capacity and sensor 
sensitivity progress even further, the data will only become less manageable. For some 
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species, where individual markings are clearer and consistent, members of the species 
can be individually identified, and thus population estimates for a certain region can 
be directly observed. However, for quite a few species this is not a viable technique: 
many animals lack persistent or prominent individual markings, and thus cannot be 
readily individuated. Such limitations prevent researchers from reliably identifying 
whether an individual is a repeat visitor (a recapture); however, identification at the 
species level is not precluded. In order to better extrapolate estimates of population 
density from the photos that they capture for these animals, the research team at TBS 
has begun using a recently developed gas particle model.

11.3  POPULATION DENSITY MODELING

In an effort to relax the complex reality of animal interactions, Rowcliffe et al. (2008) 
developed a two-dimensional ideal gas model to represent contact between individual 
animals. This method requires no individual recognition because it extrapolates from 
the number of times any member of a species is observed. The model can be used 
to estimate the number of particles in an area based on the number of collisions in 
which a single particle takes part. It assumes that the particles collide elastically 
and without friction. By modeling individual animals as particles, various properties 
of the population can be estimated using the model. In this particular application, 
the camera itself is also regarded as a particle, which is said to contact particle(s) 
whenever it sees an animal. The total number of particles in a given area, based on the 
model’s assumptions, can then be computed as a function of several variables: total 
area, animal velocity, observed area of the camera, the number of contacts that it has 
with other particles, and time elapsed—all of which can be readily determined with 
data from camera traps. The density can therefore be computed by dividing the total 
area on either side, since density is the ratio between population and area.

While Rowcliffe et  al. (2008) described the comparison of roaming animal 
population behaviors to ideal gas particles as unrealistic, the model nonetheless 
provides a robust estimation of population densities. By using camera trap data from 
Whipsnade Wild Animal Park in England (with less than 1000 photographs) and 
comparing the computed estimates with census data from the same area, Rowcliffe 
et al. performed an analysis on four mammal species. In three out of four of the 
examined species, they found that the model’s estimates were within 22% of the 
census results, although the estimate for one species was 86% smaller than what was 
observed in the census. It is also worth noting that their estimates were distributed 
evenly on either side of the figures reported in the census.

Several other models have become popular in studies without the option of 
individually identifying species members, the most popular perhaps being the 
maximum entropy (Maxent) method. As Merow et al. (2013) explain, the model 
first requires researchers to define a landscape, breaking it into grid cells. Using 
presence-only data as input, which simply marks the locations at which a species 
has been seen, the Maxent algorithm attempts to generalize to background locations, 
which are regions of the landscape where the species’ presence is unknown. 
Maxent outputs a relative occurrence rate (ROR), which marks the probability of 
an individual originating from any given cell. However, since this analysis depends 
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on the assumption that the data compiled from camera traps are representative of 
the whole landscape (i.e., a random sample)—a faulty assumption in most cases—
additional data are used to correct the bias. For example, a feature will be selected 
that ideally varies with animal density, such as precipitation or temperature in a given 
area. Other factors include search effort in each cell within the landscape, allowing 
the sampling bias to be mitigated.

In order to test the efficacy of population models on small sample sizes, Pearson 
et al. (2006) adopted a jackknife statistical method in lieu of independent census data. 
This is also known as leave one out: for each of the n observed localities, they tested 
the models’ predicted population density based on the remaining n − 1 localities. By 
averaging out the estimated versus observed populations, they were able to assess the 
performance of the Maxent against the Genetic Algorithm for Rule-Set Prediction 
(GARP)*. In particular, they assessed the models on presence-only data for an elusive 
species of nocturnal leaf-tailed geckos in Madagascar. Whereas GARP failed to 
accurately predict populations with very small (less than 10) localities, the Maxent 
model performed significantly better, reaching high success rates with as little as five 
measured localities. These results suggest that Maxent, if properly configured, may be 
a viable solution for modeling populations of endangered and elusive species, where 
sample size is a particularly troublesome problem.

By utilizing the gas particle model, the researchers at TBS merely have to 
identify the species present in their photographs, rather than distinguishing between 
individuals within a species in order to estimate the total population. However, the 
process of identifying animals at the species level is still time consuming. Because 
of the sheer mass of photographs being produced there and elsewhere, automating 
this process would provide the means of carrying out large-scale analyses without 
requiring the bottleneck of human input. Likewise, an automated approach to the 
Maxent model would simply require the presence locations of each species, which 
would be calculated (after species identification) from a camera’s global positioning 
system (GPS) data, and some auxiliary data to mitigate sampling bias. In order 
to examine the potential of automating this process, the next sections will look at 
existing computer vision technologies and the extent to which they can be adapted 
for recognition of both species and individuals.

11.4  CONVOLUTIONAL NEURAL NETWORKS†

A feedforward neural network is a set of interconnected nodes (inspired by neural 
connections in the brain), with directed weighted connections. A feedforward neural 
network can be used for probabilistic categorization of inputs. The design of neural 
networks has sometimes been inspired by cognitive science. Computational methods, 
notably stochastic gradient descent, exist to find weights for a feedforward neural 
network such that the network is able classify instances in the training set. This 

*	GARP uses a process inspired by natural selection to develop conditional rules that correlate with 
factors indicative of population distributions.

†	 Much of the material and terminology in this section is informed by LeCun et al. (2015)’s extensive 
review of the subject.
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process is referred to as training the neural network. A training set contains input 
(often images) with matching labels, or categories. When training, based on the 
network’s success rate in guessing the correct label, its connections are modified 
to better optimize its accuracy. Neural networks learn by modifying connections 
throughout between the nodes in the network.

Convolutional neural networks (CNNs or ConvNets) are a category of feedforward 
neural networks. The connection patterns between their nodes have partly been 
inspired by the connection in the visual cortex of the mammalian brain. The 
connections between the nodes in CNNs are arranged in such a way as to allow 
detection of the same pattern in the entire image; furthermore, the connections are 
such that they allow for the CNN to model patterns at different levels of abstraction. 
This allows for the creation of representations of visual patterns, with layers of 
nodes that are further away from the nodes containing the input image encoding 
more general and abstract patterns. CNNs are able to represent and recognize very 
complex patterns as a result. The ability of CNNs to represent complex patterns leads 
to high performance in image classification tasks. For example, CNNs have reached 
more than 90% accuracy in high-quality photographs of fish, butterflies, and plants 
(Hernández-Serna & Jiménez-Segura, 2014), using ∼10,000 training images of 740 
distinct species. Many CNNs can process hundreds of images each second, even on 
a modest laptop. They need not operate on any particular taxonomical level: that is, 
depending on the training sets used and ecological factors, CNNs may be trained to 
identify individual members within a species just as readily as they would identify 
one species from another. This elasticity is powerful because the ability to distinguish 
visual features stems directly from the features that humans have already observed. 
CNNs can therefore learn to distinguish either species or individual members, 
depending on the specificity of labels in the training sets; or any other property 
associated with visual changes. Adapting these systems to identify wild animals 
from camera traps is quite straightforward: by using existing, labeled camera trap 
photos as training sets (as well as online databases compiled for this purpose) and 
existing networks with deep representational power, a CNN can be trained to achieve 
adequately high performance in this area.

11.4.1 S tate-of-the-Art Performance

A network’s performance classifying a labeled data set (i.e., the proportion of images 
correctly classified) is a popular type of metric for benchmarking a CNN’s capability, 
generally using a test set—images not in the training set that the network tries to 
predict. One such metric is the annual ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC), which uses a subset of the ImageNet (Deng et al., 2009) data set 
to analyze performance. In an extensive report on their challenge, Russakovsky et al. 
(2015) compared state-of-the-art object classification systems with human ability, 
using a Top-5 classification error, which defines an error as failing to guess the correct 
category within five attempts. The organizers trained two human annotators, A1 
and A2, on an image-labeling task using hundreds of examples before testing each 
annotator on 1500 and 258 images, respectively. A1 achieved a Top-5 classification 
error rate of approximately 5.1%; whereas A2 performed much worse, with an error 
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rate of 12%. A1’s error rate translates to a Top-5 classification accuracy of ∼95%, 
meaning a correct guess within five attempts for 95% of the test cases. One of the 
top machine classifiers in ILSVRC 2014, GoogLeNet (Szegedy et al., 2015), was 
tested on the same test set as A1, and achieved a Top-5 error rate of ∼6.8% (∼93% 
accuracy). Of the images in the test sets, 204 overlapped between A1 and A2; and, 
since the annotators did not show a strong overlap in their guesses, the researchers 
estimated an optimal human error rate of 2.4% by combining their answers. Various 
networks have since surpassed A1’s performance, including He et al. (2015)’s CNN, 
which achieved a 4.94% Top-5 classification error on ImageNet, using ∼1.2 million 
training images and 100,000 images to test. Although this may still be far from the 
estimate of optimistic human accuracy, it is clear that machines have proven equally 
as effective in this task as the average human.

VGG16, another top competitor in ILSVRC 2014, is a “very deep” state-of-the-
art CNN designed by Simonyan and Zisserman (2014). VGG16’s base performance 
on several groups of taxonomic categories in the ILSVRC 2014 test set is shown in 
Figure 11.1. The test set contains 1000 unique categories, 398 of which classify some 
biological group (the others are assorted objects), each represented by 50 images 
of relatively high quality. For some groupings, such as birds (of which there are 
37 categories), VGG16 correctly predicted the category in its first guess for more 
than 80% of test cases, and in nearly 95% cases classified it correctly in its Top-5 
predictions. As shown in Figure 11.2, the network’s misclassifications were often of 
genetically and visually similar animals, and were thus errors a human might make 
as well.

Figure 11.1 also shows performance when the test set is restricted based on the 
confidence rating. The confidence rating for a specified image and group of categories 
is, intuitively, the network’s confidence that the image should be classified under 
any of the categories in the group. Restricting the test cases to instances where 
the confidence exceeds a certain threshold yields considerable improvements in 
classification performance. For example, by ignoring photos of marine animals for 
which VGG16 shows less than 50% confidence, and analyzing only the remaining 
85% of the photos, the system sees an increase in performance of more than 10%. 
Such a restriction could be used to quickly filter out ambiguous images that will likely 
be misclassified, and that require expertise to classify with confidence.

11.4.2 I ntegrating with Ecological Paradigms

Because CNNs (and neural networks in general) are an emerging technology, very 
few attempts have been made to integrate them with field research. Gómez et al. 
(2016) reportedly found only two previous attempts. In their study they use the 
Snapshot Serengeti* data set, which provides more than a million labeled camera 
trap photos for training and testing sets, combined with fine-tuned off-the-shelf 
features, a special class of networks which use the feature recognition configurations 

*	Swanson et al. (2015) describe the Snapshot Serengeti project in depth. The project involves hundreds 
of cameras operating since 2010, with more than a million photos as of 2013. A citizen-science website, 
www.snapshotserengeti.org, has collected more than 10 million labels from online users.
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of previously trained CNNs (e.g., AlexNet or GoogLeNet) that already have rich 
representational power, with some training performed on them in order to acclimate 
them to the Snapshot Serengeti data set. Doing this, they achieved an approximately 
90% success rate in distinguishing among 26 different species (using a training set 
with hundreds of thousands of images)—not entirely satisfactory, but quite incredible 
given the novelty of the techniques for this specific application. Gómez et al.’s work is 
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also an improvement upon prior attempts they had found, indicating a large increase 
in performance in just a couple of years. As CNNs continue to rapidly improve, even 
greater gains will likely be seen.

One concerning issue with this methodology is that endangered and elusive 
species will be underrepresented in the data sets, and thus the networks will be less 
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tuned to recognize their features. This is known as one-shot or few-shot learning, 
wherein the target categories (which are to be matched with labels) are represented 
by sparse data—or even zero-shot learning, where only a description of a category, 
but no example of images from the category, is available. This might often be the 
case in ecological studies, where species lacking any preexisting photographic data 
might be uniquely recognized by a set of features a network can recognize. One 
attempt to eliminate biases in the data set by Hoffman et  al. (2014) focused on 
adapting the CNN’s internal architecture to better identify categories with sparse 
representation, of which endangered species are a prime example. They were 
able to increase performance on a subset of ImageNet from 66% accuracy to 77% 
using these techniques. Evidently, while identifying underrepresented species is a 
significant challenge, further research in network architectures could mitigate the 
problem.

Finally, there are some consequences that follow from the design of CNNs. 
There is no possibility for accidental errors as with humans: it is impossible for a 
neural network to mix up two photos it is analyzing because the process is entirely 
sequential and independent. Misclicking and mixing up photos is not a possibility. 
In all likelihood, poor performance on the edge cases, which truly do require human 
ingenuity to label, might be offset by a computer’s lack of such trivial errors. That 
said, CNNs are susceptible to the same analytical mistakes that humans make. Just 
like the human propensity to see faces and patterns in random stimuli—known as 
pareidolia—neural networks are prone to the same hypersensitivity. Nguyen et al. 
(2015) report false positive predictions on the aforementioned AlexNet system using 
randomly perturbed images to produce what they call fooling images. These are 
pictures that are entirely unrecognizable to the human eye, but that the network 
nonetheless labels with more than 99% confidence. Clearly, these systems are far 
from perfect; but because the fooling images were purposefully contrived, this may 
not have a significant impact in the context of camera trap photos.

11.5  FACIAL AND INDIVIDUAL RECOGNITION

Face recognition is an important benchmark for prospecting the possible performance 
of other recognition systems, since such systems are the forefront of numerous 
prominent and emerging technologies—forensics, social media, security, and 
virtual reality, to name but a few—and thus much of the literature and state-of-the-
art technical developments are based on facial modeling and matching. Although 
CNNs are now used extensively in face recognition, there are still a number of 
strategies from the field that may prove useful in identifying individuals. Moreover, 
the heuristics in use—which have been designed specifically for facial features—can 
give insight into the potential performance of modeling systems on animals, should 
the same tools be developed in that area. Tsao and Livingstone (2008) predict that 
“face perception is in many ways a microcosm of object recognition; and the solution 
to the particular problem of face recognition will undoubtedly yield insights into the 
general problem of object recognition.” This section will overview three challenges 
and associated strategies in facial recognition that might be applied in the context of 
animal species recognition.
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Unconstrained face recognition—the problem of matching faces to a database 
without any control over the lighting, colouration, or angle/extent at which each face 
is exposed—is a major open problem in computer vision. With major progress at 
the task of face recognition with monotonic backgrounds with normalized poses, 
the prevailing goal now is to recognize faces from any context or camera. Best-
Rowden et al. (2014) call the subjects “uncooperative”—surely an apt descriptor of 
the wild animals roaming natural parks. In their study, focusing on the viability of 
unconstrained face recognition for forensic purposes, they use low-quality candid 
images and video. In order to analyze this media, they employ a “state-of-the-art 
face matcher and a separate face modeling SDK [development kit].” The latter is 
capable of generating pose-corrected faces, which are extrapolations of the original 
image recreated in a frontal view. In this particular study, Best-Rowden et al. probed 
several candid photo databases, using 13,000 images and more than 3000 videos. 
They achieved recognition scores of higher than 95% when the input media included 
multiple images and video tracks. While much lower error rates have been achieved for 
normalized data, this marks an impressive feat in recognizing entirely unconstrained 
input sources. However, Kemelmacher-Shlizerman et  al. (2016) report that such 
promising results may not generalize to scale: in a data set with a million unique 
individual faces, state-of-the-art facial recognition algorithms degrade proportionally 
with the number of distractors (faces of individuals not present in the test set).

This capacity to artificially normalize an input is immensely facilitative to 
recognition. For example, even the fusiform face area, the neural region in the brain 
evolutionarily honed to represent faces, is famously prone to misidentifying upside-
down faces (Tsao and Livingstone, 2008). This is the result of an infamous problem 
in cognitive science: the lack of invariance problem. The brain’s visual processing 
systems seamlessly interpret complex patterns, objects, places, and people for us 
despite immense variation: poor lighting, distorted shapes, an odd angle or visual 
obstacles, among other things, result in an immense amount of misleading or missing 
visual information. Nonetheless, the brain can instantly associate a face with a person 
by comparing the face to its mental representation. Since faces are as variant as 
objects and animals, the elusive answer to this puzzle could be a breakthrough in 
representing and recognizing arbitrarily complex visual patterns that persist across 
many variations—exactly the obstacle preventing automated camera trap recognition 
from blooming. Thus high performance in state-of-the-art facial recognition on 
unconstrained sources is applicable as a benchmark for the camera trap paradigm, 
since the same concepts will eventually transfer to individual recognition of animals. 
For this to become a reality, however, much research and implementation is needed 
in developing the same heuristic modeling and matching algorithms as have been 
developed specifically for faces.

As in animal classification, underrepresentation in the data can be a major problem 
for recognizing individuals. One technique for one-shot learning in individual 
recognition, developed by Masi et al. (2016) for CNNs, could help to mitigate the 
bias. Starting from a relatively small set of training images, they created several 
copies of each with morphological variations in order to simulate a diversity in 
their input, in effect creating new training cases where there had been only one 
before. These mutations included pose variation, 3D shape variation, and expression 
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variation. For example, pose variation involved the re-creation of new viewpoints 
in order to create several versions of a human face from a single image—similar to 
the pose-corrected faces used by Best-Rowden et al. (2014). This artificial variation 
was effective, allowing the authors’ neural network to perform as well as more 
sophisticated networks trained on up to a thousand more images. Although the same 
transformations may not apply to detection of distinguishing marks, the underlying 
concept transfers to camera trap photos. By creating transformations that sample from 
any possible variability in the photos (e.g., in lighting, angle, orientation), a CNN may 
be more effectively trained to differentiate species.

11.6  DISCUSSION

Having examined two models of population distribution that are currently in use for 
predicting population densities from camera trap data; and having looked at state-of-
the-art species recognition (with CNNs) and facial recognition, the question remains: 
are existing computer vision technologies, coupled with these population models, 
sufficiently accurate to be used (or adapted) as part of an automated population 
density estimation system?

11.6.1 E cological Considerations

First, it is worth reviewing the many ways in which the environment under 
consideration can alter the applicability of automated recognition and population 
models. It has been seen that the performance of VGG16 on the ImageNet data set 
varies significantly across categorical groupings of animals—and there are many 
reasons for this, because it reflects a huge variability in animal appearance. Perhaps 
the most apparent variable is the simplest: biological groups vary widely in the extent 
of their diversity. Another factor concerns scale—microscopic environments of 
course differ greatly from macroscopic environments, and a system that has learned 
to recognize patterns in the latter may experience great difficulty in analyzing the 
former, or in distinguishing the size of an individual. Thus the extent of physical 
differences across categories must be considered in order to evaluate the applicability 
of machine learning systems.

There is at least one benefit in employing CNNs for individual recognition in certain 
situations. The dynamic nature of CNN learning marks an abrupt departure from 
other feature recognition systems: for example, their predictive skills are able to adapt 
to changing frameworks of knowledge. Transient markings (visual characteristics 
that are temporary or seasonal) have made individual recognition impossible in some 
species: “until the technology exists that can keep up with change… you have to add 
human decision into the mix” (M. Povarova, personal communication, June 2016). 
However, their ability to reform previous connections make CNNs a suitable candidate 
for this task. Traditional face recognition techniques, on the other hand, apply best 
to scenarios in which transient markings are minimal since they perform best when 
there are distinct and recognizable features. Additionally, zero-shot learning and 
other aforementioned techniques can be used to reduce selection bias by allowing 
individuals with little or no existing photographic representation to still be identified.
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There are also spatial modeling considerations to be made in applying the Maxent 
and gas particle models to animal populations. Because the gas particle model 
assumes a 2D distribution of animals, it is at best a weak approximation of real 
ecological environments. Generalizing the model to three dimensions and accounting 
for the biases of a species’ patterns of movement could improve how well the model 
approximates the reality. Maxent models similarly suffer from a lack of knowledge 
about the distributional patterns of spatial cells—and these need to be addressed 
in order for the model to accurately represent the state of affairs. Adapting such a 
model to an environment would inevitably include an analysis of which cells in the 
landscape share similar properties, and to what extent. Territoriality among a group 
of animals may further confound these models since a group’s distribution might 
fluctuate seasonally, and therefore must also be considered when applying the models 
to a study.

11.6.2 C onclusion

The success of object recognition and classification technology in the domains of 
face and generic-object recognition suggests that the technology could be applied 
to ecological studies: perhaps with enough work spent developing heuristics for 
modeling and matching images, the same successes seen in facial recognition can 
be transferred to camera traps. Due to the nature of the lack of invariance problem, 
wherein a recognition software must be able to encode core features of a visual object 
that are subject to modification and mutilation, the same underlying concepts are 
directly applicable to almost any area of computer vision. These recognition systems 
are therefore a likely approximation for individual animal recognition, and at the very 
least can provide a benchmark for potential performance. In addition, the dynamic 
learning ability of CNNs makes it a good candidate for individual recognition because 
transient markings would be considered one part of the network’s constantly adapting 
knowledge base.

Since both the gas particle model and Maxent only require identification of 
species type for each captured photo, and the latter has effective results even in very 
small sample sizes, the only component missing for a fully automated system is the 
recognition of species. As shown here, convolutional neural networks have reached 
quite accurate species recognition scores, not only for high-quality photographs but 
even within the camera trap paradigm. Although there are some shortcomings in this 
approach, including an underrepresentation of endangered species and a predisposition 
toward false positive recognition, these problems are not irreparable: pose variations 
and other augmentations can be used to mitigate the underrepresentation bias. Finally, 
CNNs lack the accidental mislabeling that can plague manual systems; and their 
propensity for false positives is likely no worse in practice than it is for humans. 
They are thus well suited for a preliminary labeling task for high-confidence guesses, 
culling the more ambiguous data, which requires an expert or crowdsourced opinion. 
While machine processing at this stage is by no means perfect, these systems will 
only continue to improve. Crowdsourcing initiatives—such as Snapshot Serengeti—
provide rich sources of labeled data, making training sets available to researchers 
globally. Cultivating and sharing this information allows for the training of CNNs to 
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better learn prominent patterns and distinctions between various species, to integrate 
a more diverse knowledge base, and to exploit automated understanding to better 
address pressing ecological concerns. For this reason, current research projects 
should be encouraged to share image and labeling data so as to collaboratively work 
on developing systems sophisticated enough to parallel human ability.

Thus, existing technologies for species recognition can currently be coupled with 
models of population density that do not require individuation, and can clearly do so in 
an accurate manner. There is, of course, room for improvement: performance in some 
domains is still inferior to humans. However, by adopting these innovations early on, 
an increased interest and collaboration can drive improvement in this area, namely, by 
producing more training data for CNNs to learn from. As shown from state-of-the-art 
facial recognition systems, our conceptual knowledge recognizing individual variation 
in humans has reached near-human (or perhaps even better) performance, and if the 
feature detection principles can indeed be transferred to individual animal recognition, 
the capability to accurately identify individual animals from camera trap data is likely 
on the horizon. Again, improvements will be driven by increased interest and work 
in this area, and thus putting confidence (and money) in the viability of such a system 
would be a major driver of progress. In the near future, these systems will undoubtedly 
be able to accurately monitor animal populations in a fraction of the time it currently 
takes for manual organization, labeling, and further analysis.
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12 UAV-Based Multispectral 
Images for Investigating 
Grassland Biophysical 
and Biochemical 
Properties

Bing Lu and Yuhong He

12.1  INTRODUCTION TO UAV-BASED REMOTE SENSING

Satellites and airplanes have been extensively used in past decades to acquire remote 
sensing imagery. However, imagery from such platforms is typically restricted by 
weather conditions, operational complexity, acquisition cost, and technical constraints 
on spatial and temporal resolution (Zhang and Kovacs 2012). The lack of high spatial 
and temporal resolution imagery poses problems when studying grasslands with small 
plants, mixed communities, and rapid changes. In recent decades, unmanned aerial 
vehicles (UAVs) have been developed rapidly and were also applied as low-altitude 
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remote sensing platforms. UAV-based remote sensing shows many advantages over 
satellite- or airplane-based remote sensing, including but not limited to its low 
operation cost, low flight altitude (thus less limited by weather conditions), ability to 
acquire imagery at very high spatial resolution (centimeter scale), and high flexibility 
of deployment for repeat missions (Hunt et al. 2010; Laliberte et al. 2011).

In recent years, different types of UAVs have been utilized for remote sensing 
research; commonly used ones include unmanned multirotor copters (e.g., quadcopter, 
hexacopter, octocopter) (Nebiker et al. 2008; Córcoles et al. 2013; Del Pozo et al. 
2014), unmanned helicopters (Nebiker et al. 2008; Swain et al. 2010), and fixed-wing 
planes (Hunt et al. 2008, 2010; Laliberte et al. 2011). Such UAVs have been utilized 
widely in various areas, such as precision agriculture, forest inventory, grassland 
mapping, fire detection and monitoring, invasive species detection, hydrology and 
riparian applications, pipeline inspection, movie production, and traffic monitoring 
(von Bueren et al. 2015). UAV systems typically integrate a module that controls 
autonomous flights based on predefined waypoints with global positioning system 
(GPS) information. It is thus convenient to fly over a targeted study area with 
limited human intervention. Various lightweight sensors, including digital cameras, 
modified digital cameras with a near-infrared (NIR) band, multispectral sensors, 
and hyperspectral sensors (Lelong 2008; Nebiker et al. 2008; Córcoles et al. 2013; 
Lucieer et al. 2014), have been developed to be deployed on UAVs. Since motion of a 
UAV is based on accurate stabilization of the whole system (e.g., rotor, frame), there 
are limitations for mount payloads (e.g., sensors) in terms of weight, size, or power 
supply. Adding payloads (e.g., using a heavy sensor) may cause imbalance to the UAV 
system. Digital cameras are therefore widely used because they can be lightweight, 
low cost, and easy to operate.

UAVs have been widely applied in various vegetation studies including precision 
agriculture and forest inventory (Nebiker et al. 2008; Laliberte et al. 2011; Gini et al. 
2012; Zaman-Allah et al. 2015; Luna and Lobo 2016), but less so in grassland areas. A 
few existing grassland applications include rangeland mapping and species classification 
(Rango et al. 2006; Laliberte and Rango 2011; Lu and He 2017). Grasslands show 
distinct features compared with agricultural fields and forests, such as small plants and 
highly mixed species; therefore it is important to evaluate performance of UAV-based 
remote sensing for estimating grassland vegetation properties.

12.2  INVESTIGATING GRASSLAND PROPERTIES USING UAV

This study used a modified digital camera mounted on a multirotor UAV to investigate 
vegetation properties in a tall grassland. The goal was to establish a workflow for 
processing UAV-acquired images (e.g., mosaicking, geometric correction, and 
radiometric calibration), estimating vegetation biophysical and biochemical properties, 
and investigating spatial variations of these properties. The vegetation biophysical 
and biochemical properties that were investigated in this study include leaf area 
index (LAI) and chlorophyll content. LAI is a key canopy structural characteristic 
indicating vegetation physiological processes (e.g., photosynthesis, interception of 
radiation), while chlorophyll content is a fundamental factor governing vegetation 
photosynthetic capacity and productivity (Darvishzadeh et al. 2008).

(c) ketabton.com: The Digital Library



247UAV-Based Multispectral Images for Investigating Grassland

12.2.1 S tudy Area

The study was conducted at Koffler Scientific Reserve (KSR) at Jokers Hill, located 
in Southern Ontario, Canada (Figure 12.1). The grassland in this reserve is temperate 
tall grassland, with grass height reaching up to 120 cm in the growing season (May 
to September). The mean temperature in this area ranges from −10°C (February) to 
30°C (July), and monthly precipitation varies from 20 mm (March) to 100 mm (July) 
(Environment Canada 2016). The common grass species in this area are awnless 
brome (Bromus inermis Leyss), Canada goldenrod (Solidago canadensis), fescue 
(Festuca rubra L.), and milkweed (Asclepias L.).

12.2.2 U AV System, Sensor, and Image Acquisition

This study used a Tarot T15 Octocopter (Tarot RC, Wenzhou, China), owned and 
operated by the Flight Systems and Control Group at the University of Toronto 
Institute for Aerospace Studies (Figure 12.2). The UAV system weighs approximately 
4.5 kg and has a maximum endurance of 20 minutes. Using an autopilot flight control 
system, the parameters of flight mission, such as area, path, altitude, and speed, were 
predetermined. Flights were conducted with the permission of the airspace authority. 
The imaging sensor mounted on the UAV was a modified Canon PowerShot ELPH 
110 HS (Canon Inc., Tokyo, Japan). Typically, such digital cameras are limited to red, 
green, and blue optical bands. To capture the vegetation features in the NIR range, 
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FIGURE 12.1  Map of Koffler Scientific Reserve. The background image was from a 
Quickbird near-infrared band, acquired on July 14, 2013.
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the original red filter was replaced with an NIR filter to permit sensing in the NIR 
band and thus produce NIR-green-blue imagery (LDP LLC, Carlstadt, New Jersey). 
This camera weighed 135 g and acquired images with a resolution of 16.1 megapixels.

Seven UAV flights were conducted from April to December 2015 to investigate 
the complete grassland growing cycle. For each flight mission, the UAV was flown at 
an altitude of approximately 70 m above ground and a speed of 7 m/s. Imagery was 
acquired every second, so that the acquired images had approximately 85% forward 
overlap and 50% side overlap. The overlap is crucial to determining the imaging 
location and orientation for image mosaicking. Each flight mission was separated 
into three sub-missions due to the limits of the UAV’s battery life (approximately 20 
minutes). All flights were conducted under stable illumination condition with fixed 
camera settings in order to acquire images under uniform conditions. In this chapter, the 
imagery collected on July 9, 2015, was selected to investigate the fast growing season 
vegetation LAI and canopy chlorophyll content as well as their spatial variations.

12.2.3  Field Investigation

A total of 23 study sites, varying in species composition, vegetation growth status, and 
topographic conditions, were preselected. Each site was circular, with a 1 m diameter, 
and its boundary marked with colored flagging tape. Uniform white foam board 
(38 × 50 cm) labeled with the site identification was fixed on the ground adjacent to 
each study site. These foam boards were expected to be visible in the UAV-acquired 
imagery. The field survey was conducted simultaneously with UAV flights to measure 
vegetation properties and environmental factors, including LAI, species composition, 
canopy reflectance, vegetation height, and soil moisture. LAI was measured using 
an AccuPAR LP-80 ceptometer (Decagon Devices, Inc., Pullman, Washington). 
Canopy reflectance was collected using an ASD FieldSpec 3 Max field-portable 
spectroradiometer in the spectral range of 350–2500 nm (Analytical Spectral Devices 
Inc., Boulder, Colorado). The reflectance data were later used for image radiometric 

FIGURE 12.2  UAV and camera. The arrow shows the camera mounting at the bottom of UAV.
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calibration. Soil moisture was measured using HydroSense II (Campbell Scientific, 
Inc., Logan, Utah). GPS information for all 23 study sites and an additional 12 
ground features (e.g., road intersections and individual trees) was collected using 
Trimble GeoExplorer (Trimble Navigation Limited, Sunnyvale, California) for image 
geometrical correction. Leaf samples for each site were also collected and taken to a 
laboratory for chlorophyll extraction following Minocha et al. (2009).

12.2.4 I magery Process

A total of 700 images were acquired during the flight mission on July 9, 2015. The 
image processing steps included quality evaluation, orthorectification and mosaicking, 
geometric correction, and radiometric calibration (Figure 12.3).

12.2.4.1  Image Quality Evaluation and Process
Image quality evaluation involved a visual examination of image quality (e.g., oblique 
scenes, blurry) and evaluation of image radiometric distortion (e.g., assessing vignetting 
and atmospheric effects). Oblique scenes were identified in some images, largely due 
to the roll of the UAV system in flight, especially when changing direction. A small 
number of images were blurry, probably due to UAV vibration in response to wind 
gusts. Images with these issues were removed from analysis. Radiometric distortion 
can be introduced by various factors in the image acquisition process. Lebourgeois 
et al. (2008) discussed these factors and grouped them into two categories: camera-
related factors (e.g., camera settings, vignetting effect) and environment-dependent 
factors (e.g., atmospheric effect, topographic condition). Our images were acquired 

Image quality evaluation and process

Image orthorectification and mosaicking

Geometric correction Established field ground control points

Image radiometric distortion evaluation

Image quality quick check

Radiometric calibration

Calibrated imagery

Field-measured reflectance

FIGURE 12.3  Processing steps for UAV-acquired images.
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using invariant camera settings and under stable illumination conditions, so the impact 
of these factors on the images was constant. The UAV was flown at a low elevation 
(70 m) in a relatively flat grassland area; therefore, the influence of atmospheric and 
topographic variation was negligible (Hunt et al. 2008; Knoth et al. 2013; Del Pozo 
et al. 2014). This study emphasizes evaluating the vignetting effect.

The vignetting effect refers to brightness attenuation or gradual darkening of an 
image away from the image center and is an artifact prevalent in digital photography 
(Lebourgeois et al. 2008; Del Pozo et al. 2014). The vignetting effect results from 
the optical properties of camera lenses and is geometric in nature, in that less light 
is received by the camera sensor at the edges than in the center (Lebourgeois et al. 
2008). Various approaches have been developed to evaluate the vignetting effect in 
previous studies. For instance, Lebourgeois et al. (2008) calculated an average from 
500 images (separated bands) that were acquired in different locations and elevations 
in a field experiment. The resultant mean image was applied to determine the impact 
of the vignetting effect and image correction. This approach requires a great deal 
of computational power, and the accuracy of the mean image could be influenced 
by numerous ground features (e.g., highly reflective ground features distributed in 
the edge area of photos). Del Pozo et al. (2014) took a series of photographs of a 
white pattern with low-specular reflection in a laboratory under uniform illumination 
conditions, and then compared the pixel values in the photo center area with those in 
the edge area. However, it is a challenge to achieve such imaging conditions in field 
settings. In this study, the vignetting effect was evaluated by comparing pixel values 
of the same study site but extracted from different images. Since there is large overlap 
among adjacent photos, one study site can potentially be located at different locations 
in the images (i.e., located either in the image center, the edge, or the area between). 
Therefore, pixel values can be compared by the distance of the study site to the image 
center. The digital values of pixels within the study site area were extracted in ENVI 
(Visual Information Solutions Inc., Boulder, Colorado) and averaged, providing one 
mean pixel value of the study site for each band in each image. The results of one 
study site are shown in Figure 12.4.
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FIGURE 12.4  Comparison of pixel values of one study site by distance to image center in 
different images. NIR, green, and blue band pixel values were compared within each band.
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If the image suffered severely from vignetting effects, the study site pixel values 
would decrease further away from the image center (Lebourgeois et  al. 2008). 
However, there is no clear decrease in pixel values accompanying distance from the 
image center for all three spectral bands (Figure 12.4). The minor variations in pixel 
values for each band were potentially a result of the combined vignetting effect, 
different view angles, and the averaging of pixel values. We therefore concluded that 
the vignetting effects were minimal, and they were thus ignored. In addition, during 
the mosaicking step, pixel values in the images with more than 50% overlap were 
averaged, further reducing any potential vignetting effects.

12.2.4.2  Image Orthorectification and Mosaic
Orthorectification is an important processing step for UAV-acquired imagery (Turner 
et al. 2012). It was conducted to rectify images with the correct position relative 
to ground features (Laliberte et  al. 2010). For each flight mission, the UAV can 
obtain hundreds to thousands of images, which must be mosaicked to produce an 
image covering the entire area. This study used PhotoScan software (Agisoft LLC, 
St. Petersburg, Russia), which is based on structure from motion (SfM) to generate 
orthorectified and mosaicked imagery (Stafford 2013; Whitehead and Hugenholtz 
2014). General processing steps in PhotoScan include camera alignments, point cloud 
generation, 3D mesh, texture building, and orthomosaic generation (Agisoft LLC 
2016). Camera alignment is used to find the position of each photo that relies on 
overlap among images. After camera alignment is complete, a point cloud is generated 
to represent the positions of photos. Mesh and texture are established sequentially, to 
represent the surfaces of objects. The orthomosaic is then generated.

12.2.4.3  Geometric Correction
The orthomosaic imagery generated in the previous step was geometrically corrected in 
ArcMap (ESRI, Redlands, California), using GPS information of ground control points 
(GCPs). The GCPs included both study sites and an additional 12 ground features.

12.2.4.4  Radiometric Calibration
Radiometric calibration was conducted to convert digital number (DN) values to 
reflectance, which can better represent spectral properties of ground features (Teillet 
1986). Typically, DN values from remote sensing imagery are converted to radiances 
using sensor gain and bias values, which are then divided by solar radiance to produce 
reflectance (Jensen 2006). Since the gain and bias values were not available for our 
sensor, the widely used empirical line method was applied to correlate the DN values 
with ground-measured reflectance (von Bueren et al. 2015). DNs of pixels within the 
circle of each study site were extracted from imagery and averaged. Ground-measured 
reflectance of each site was averaged along each spectral band (i.e., NIR, green, and 
blue). Linear relationships between DNs and ground-measured reflectances were then 
established for each of the three bands (i.e., NIR, green, and blue) individually. Data from 
12 sites were used for establishing regression lines, and data from the remaining 11 sites 
were used for validation. Figure 12.5 shows the linear relationships for three bands of 
the imagery acquired on July 9, 2015. Linear regressions were then applied to convert 
DNs to reflectance for the entire image; the final reflectance map is shown in Figure 12.6.
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12.2.5  Vegetation Properties Estimation and Analysis

Spectral vegetation indices are one of the most important tools for estimating vegetation 
properties from remote sensing imagery (He et al. 2006). Various vegetation indices 
have been developed to enhance vegetation signals, reduce influence of backgrounds 
(e.g., soil), and investigate different vegetation properties (Tong 2014). Normalized 
difference vegetation index (NDVI) is one of the most widely used indices for 
estimating vegetation properties, and is calculated with spectral reflectance at the 
NIR and red bands using Equation 12.1 (Glenn et al. 2008)

	
NDVI

NIR red
NIR red

=
−
+ 	

(12.1)

The camera used in this study does not measure in the red band and thus the NDVI 
cannot be calculated. To compensate, the camera manufacturer suggested using a 
blue NDVI (Equation 12.2) that replaces the red band with a blue band, since the blue 
band is also an absorption band for vegetation reflection that is similar to red (LDP 
LLC 2015). Good relationships between blue NDVI with vegetation features has been 
confirmed by the manufacturer.

	
Blue NDVI

NIR blue
NIR blue

=
−
+ 	

(12.2)
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FIGURE 12.6  Mosaicked and calibrated imagery, using images acquired on July 9, 2015.
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Blue NDVI values for 12 study sites were calculated, and then correlated 
with corresponding field-measured LAI values (Figure 12.7). This relationship 
was validated using ground-measured LAI values from the remaining 11 sites 
(Figure 12.7). The LAI map was then produced using the established regression 
equation (Figure 12.8).

The spatial variation in LAI values is obvious in Figure 12.8. Area a in Figure 
12.8 is a gravel road where there was no vegetation, and therefore LAI is 0. Areas 
b and c are human-disturbed areas (e.g., cultivation) where there was sparsely 
distributed vegetation. Area d is an upland area, where the elevation is 1 m higher 
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FIGURE 12.8  LAI map generated using blue NDVI (map accuracy 75.34%; imagery 
acquired on July 9, 2015; labels a–f show areas with different LAI values).
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than the surroundings. Vegetation along this upland was sparse, likely due to less 
water availability. In contrast, Areas e and f were occupied with dense vegetation and 
had high LAI values. The dominant species in Areas e and f was Canada goldenrod 
(Solidago canadensis), which was flourishing in the summer with an average plant 
height of approximately 1 m. Field-measured LAI values in Areas e and f are 
typically above 5. Other areas in the map have moderate LAI values ranging from 
1.5 to 4.5.

For chlorophyll content estimation, Gitelson et  al. (2005) developed a green 
chlorophyll index (CIgreen) (Equation 12.3), and found it correlated well with 
chlorophyll content. We thus applied CIgreen to estimate grassland chlorophyll content 
from UAV-acquired imagery.

	
CI

NIR
Green

1green = −
	

(12.3)

CIgreen values from 12 study sites were correlated with measured chlorophyll content 
from ground sampling (Figure 12.9). The canopy chlorophyll contents were obtained 
by multiplying averaged leaf chlorophyll contents with canopy LAI. The regression 
model was validated using the measured chlorophyll content of the remaining 11 
sites (Figure 12.9) and applied to the entire image to produce the chlorophyll map 
(Figure 12.10).

Spatial variation of canopy chlorophyll is clear (Figure 12.10), but not as obvious as 
the spatial variation of LAI. In Areas a, b, c, and d, where there was no vegetation or 
sparse vegetation with low LAI values, the canopy chlorophyll contents are also low. 
In Areas e and f, with dense vegetation and high LAI values, the canopy chlorophyll 
contents are not much higher than in the surrounding areas. This is likely due to the 
fact that the leaf chlorophyll contents of Canada goldenrod, the dominant species in 
Areas e and f, are generally lower than those of other species (e.g., awnless brome), 
which were widely distributed in adjacent areas. Area g, with abundant awnless 
brome, shows much higher canopy chlorophyll contents. We also found that the 
canopy chlorophyll content in Areas h and i is much lower than those of surrounding 
areas. This is because the grasses in Areas h and i fell to the ground due to strong 
winds as field observations were being made.
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12.3  PROJECT SUMMARY

We used a UAV mounted with a modified digital camera to take images in a 
grassland area during the growing season to measure vegetation LAI and canopy 
chlorophyll content. The quality of the acquired images was evaluated, and they were 
orthorectified, mosaicked, geometrically corrected, and radiometrically calibrated. 
The vegetation indices blue NDVI and CIgreen were used to map LAI and canopy 
chlorophyll content, respectively, and the spatial variations of these vegetation 
properties were then analyzed. This project demonstrated that a UAV mounted with 
a consumer digital camera is capable of remotely measuring vegetation biophysical 
and biochemical properties. Owing to the high spatial resolution of the acquired 
imagery, we were able to observe highly detailed variation in these properties. 
Species classification potentially can also be conducted at this very fine level. A 
UAV system can be deployed repeatedly to acquire images in different seasons for 
temporal analysis. We also collected imagery from this study area in the fall and 
winter of 2015, and the temporal variations of grassland properties from these periods 
will be discussed in future work.

We found that the most important step in the image processing workflow was to 
mosaic a large number of images together; this step can be completed effectively using 
software packages like PhotoScan. Other procedures (e.g., radiometric calibration) 
can be skipped or simplified to achieve a quick and rough analysis if field data are 
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FIGURE 12.10  Canopy chlorophyll map produced using CIgreen (map accuracy 74.13%; 
imagery acquired on July 9, 2015).
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not available. For instance, the distribution of different species or vegetation growing 
conditions can be analyzed roughly using raw mosaicked imagery. Vegetation indices 
can likely be calculated using raw DNs, rather than reflectance, as has been used in 
previous studies.

12.4 � CHALLENGES AND FUTURE WORK 
WITH UAV APPLICATIONS

12.4.1 U AV Systems

Payload capacity is a major challenge for a wide application of UAV-based remote 
sensing. Limited by this capacity, only lightweight sensors can currently be mounted 
on UAVs, in turn limiting the potential to acquire high-quality multispectral or 
hyperspectral imagery. Therefore, there is a need to develop UAV systems with higher 
payload capacity, and to develop lightweight sensors that can provide more spectral 
channels for imaging. A standard protocol for processing UAV-acquired imagery 
(e.g., radiometric calibration) is also needed. Battery endurance is another major 
factor limiting the flight time of UAVs. In our study we used lithium polymer (LiPo) 
batteries, with a set of fully charged batteries enabling flying times of approximately 
20 minutes. Another challenge was wind, which destabilizes the UAV system and 
causes oblique (off-nadir) views that may result in radiometric inconsistency. If the 
UAV is caught in turbulence, acquired imagery may be blurry and data lost.

12.4.2 U AV Flight Designs and Image Processing

UAV systems are capable of acquiring very high spatial resolution imagery. However, 
the lower-altitude flight and greater overlap between images result in a larger number 
of images for the same study area, which not only requires large memory capacity 
in the camera but also requires more processing time. Those interested in UAV 
imaging are advised to determine an optimal flight altitude and overlap proportion. 
In this study, the atmospheric effect and other effects (e.g., bidirectional reflectance 
distribution function [BRDF]) were not accounted for. Further analysis of these 
effects in UAV applications is needed.
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13 Inversion of a 
Radiative Transfer 
Model Using 
Hyperspectral Data 
for Deriving Grassland 
Leaf Chlorophyll

Alexander Tong, Bing Lu, and Yuhong He

13.1  INTRODUCTION

The investigation of leaf biochemical components, primarily foliar chlorophyll 
pigments, has been a major focus of research because they are responsible for the 
photosynthetic process that influences the physiological function of vegetation. Unlike 
other pigment groups including carotenoid and anthocyanin, which are essential leaf 
structural components and complementary to the photosynthetic process, chlorophyll 
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controls the amount of incident radiation that a leaf absorbs, and thus influences 
photosynthetic potential and primary production (Curran et al. 1990; Filella et al. 
1995; Blackburn 2007). Additionally, chlorophylls can be used to detect vegetation 
stress by examining the total chlorophyll-to-carotenoid ratio; during periods of 
environmental stress and leaf senescence, chlorophylls are in lower concentration 
than carotenoids (Gitelson and Merzlyak 1994a,b; Merzlyak et al. 1999; Peñuelas 
and Filella 1998). Finally, chlorophylls can provide an indirect measure of nutrient 
status because leaf nitrogen, which is related to pigment formation and therefore leaf 
color, is contained within the structure of chlorophyll molecules (Filella et al. 1995; 
Moran et al. 2000).

Two different methods have been established for estimating chlorophyll at a 
range of spatiotemporal scales using remote sensing data. The empirical-statistical 
approach has been the most widely used, especially for estimating chlorophyll content 
at the leaf scale, using bivariate or multivariate analysis (i.e., regression models) 
to establish relationships between leaf chlorophyll content and spectral vegetation 
indices (SVIs) calculated from leaf spectral reflectance. SVIs are developed using 
linear combinations of reflectance in the visible (VIS), red edge, and near-infrared 
(NIR) spectral regions in which vegetation reveals distinct reflectance properties 
(Broge and Leblanc 2001; Darvishzadeh et al. 2008). The extrapolation of leaf-level 
relationships to larger scales has been challenging due to the confounding influence 
of canopy structure, background contributions, and nonphotosynthetic vegetation 
(Zarco-Tejada et al. 2000; Zhang et al. 2008). Indeed, many SVIs used to estimate 
chlorophyll content at the canopy level have been developed to minimize the spectral 
variability caused by external factors, such as background noise (e.g., rock, soil, 
litter), irradiance conditions, sun angle, and atmospheric composition (Broge and 
Mortensen 2002; Haboudane et al. 2008). Scaling chlorophyll content from the leaf to 
the canopy scale has been explored using three methods: direct extrapolation, canopy-
integrated, and percent-cover-based methods. The empirical-statistical approach is 
often used because of its simplicity and computational efficiency. However, this 
approach lacks generality; that is, no universal relationships can be expected to exist 
between chlorophylls and spectral reflectance (Baret and Buis 2008). Consequently, 
statistically derived empirical relationships are sensor, species, location, and time 
specific (Baret and Guyot 1991; Houborg et al. 2007).

The alternative approach is physical modeling, which uses radiative transfer 
models (RTMs) based on complex mathematical methods to describe the two main 
physical processes of absorption and scattering in order to characterize the transfer 
and interaction of radiation at the leaf and canopy level (Kötz et al. 2004; Jacquemoud 
et  al. 2009). Since RTMs are based on physical laws, they allow for an explicit 
connection between leaf or canopy spectral reflectance and a target biochemical 
(e.g., chlorophyll content) or biophysical [e.g., leaf area index (LAI)] parameter, 
respectively (Houborg et al. 2007). Models simulating leaf spectra have described 
the spectra as either the reflectance or transmittance of the light intercepted at a leaf’s 
surface, which is a function of the concentration of light-absorbing compounds (e.g., 
chlorophyll, carotenoids, water, cellulose, lignin, starch, proteins), and the internal 
scattering of light that is either inefficiently or not absorbed (Jacquemoud and Ustin 
2008). RTMs have simulated canopy reflectance as a function of foliage (e.g., leaves, 
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branches, stems) and background (e.g., soil, moss, litter) optical properties, canopy 
architecture, illumination conditions, and viewing geometry (Goel and Grier 1988; 
Chen et al. 2000). This approach does not suffer the same lack of generality as the 
empirical-statistical approach, and can be applied to a wide range of study areas 
and plant functional types and species over time, depending on the type of RTM 
(Houborg et al. 2007; Si et al. 2012).

RTMs can be employed in a direct (forward) or inverse mode. In the direct mode, 
simulated spectral reflectance values can be retrieved from either leaf or canopy 
models by parameterizing the input parameters (often from field measurements). By 
using the direct mode, spectral indices can be developed, especially ones optimized 
for a particular sensor (Ceccato et al. 2002; Jacquemoud et al. 2009). In the inverse 
mode, leaf models can be inverted to retrieve leaf biochemical parameters such as 
chlorophyll content, whereas canopy models have much more difficulty retrieving 
canopy biophysical parameters owing to the complexity of canopy structures (Schlerf 
and Atzberger 2006; Jacquemoud et  al. 2009). Hence, leaf and canopy models 
are commonly coupled in order for inversion methods based on statistical and 
mathematical approaches to be effective for parameter retrieval. Different inversion 
algorithms include lookup table (LUT) methods (e.g., Weiss et al. 2000; Gastellu-
Etchegorry et al. 2003), numerical optimization methods (e.g., Jacquemoud et al. 
1995, 2000; Meroni et al. 2004), artificial neural networks (e.g., Kimes et al. 2002; 
Walthall et al. 2004), and support vector machines regression (e.g., Durbha et al. 
2007). The limitation of model-based approaches for chlorophyll content estimation 
is the ill-posed inverse problem that not all inverted results may be unique. This issue 
can be minimized by adding additional input parameter information (e.g., biophysical 
measurements) into the model (Combal et al. 2003).

In this chapter, an endangered mixed-grass prairie ecosystem, located in 
Saskatchewan, Canada, was investigated using a physical modeling approach to estimate 
and predict leaf chlorophyll content. This study provides an exploratory evaluation of 
a coupled RTM, known as the Soil-Leaf-Canopy (SLC) model, for the retrieval of 
leaf chlorophyll via model inversion using a LUT-based algorithm. The SLC model 
had yet to be validated for leaf chlorophyll content estimation within a heterogeneous 
grassland environment, which contained vertically inclined heterogeneous canopies 
with fractional components of living and senesced material and exposed soil.

13.2  METHODS

13.2.1 S tudy Area

The study area was located in the West Block of Grasslands National Park (GNP) in 
southern Saskatchewan, Canada (Figure 13.1). The park was established in 1988 and 
is dedicated to preserving the largest intact area of northern mixed-grass prairie in 
North America (Csillag et al. 2001). This area is defined as a semiarid, mixed-grass 
prairie ecosystem which falls within the northern extent of the Great Plains (Black 
and Guo 2008). The GNP has a semiarid continental climate, with mean temperatures 
ranging from −22°C (January) to +33°C (July) and annual total precipitation 
of 270–460 mm (Lu et al. 2016). The dominant grass species found in the study 

(c) ketabton.com: The Digital Library



264 High Spatial Resolution Remote Sensing

area were junegrass (Koeleria gracilis), needle-and-thread grass (Hesperostipa 
comata), blue grama (Bouteloua gracilis), western wheatgrass (Agropyron smithii), 
northern wheatgrass (Agropyron dasystachyum), and crested wheatgrass (Agropyron 
cristatum) (Tong 2014).

13.2.2  Field Data

Fieldwork was conducted in June 2013, and measurements relating to vegetation 
biochemical content were collected within a 50 by 50 cm sampling frame representing 
the quadrats at each site. Measurements including percent coverage of the top canopy 
layer (e.g., grass, forbs, shrubs, standing dead vegetation) and lower canopy layer 
(e.g., litter, moss, lichen, rock, soil), and species composition were estimated and 
documented using photos. Soil moisture was recorded using a HydroSense II soil-
water sensor (Campbell Scientific Canada, Edmonton, Alberta, Canada). LAI was 
indirectly measured using an AccuPAR LP-80 ceptometer (Decagon Devices, Inc., 
Pullman, Washington). Plant samples, including different species of grasses, forbs, 
and shrubs, were collected and kept on ice in a dark thermal cooler, to be immediately 
dispatched for leaf-level spectral reflectance measurements and chlorophyll extraction.

13.2.3  Field Spectroradiometric Measurements

Canopy spectral reflectance was measured approximately 1 m above each quadrat 
using the Analytical Spectral Devices (ASD) FieldSpec 3 Max field portable 
spectroradiometer (Boulder, Colorado). Additional items, including standing dead 
vegetation, litter, soil, and/or rocks, were also collected for spectral measurements. 
Care was taken to ensure that the fiber optic sensor was pointing at nadir to the surface 
(e.g., perpendicular) to avoid any spectral measurement discrepancies associated 
with differing offsets. The ASD spectroradiometer was frequently calibrated with a 
certified white reference to factor for changing irradiance conditions, thereby reducing 
measurement noise. Additionally, in order to minimize the effects of shadowing and 
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FIGURE 13.1  West Block of the Grasslands National Park, located in southern Saskatchewan, 
Canada.
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solar zenith changes, spectral measurements were only taken on days with clear sky 
conditions between 10:00 and 14:00 (two hours before and after solar noon).

13.2.4 C hlorophyll Measurements

Chlorophyll pigment was extracted from the collected plant samples with acetone, 
using a standard extraction protocol (Minocha et al. 2009). The extracts were then 
spectrophotometrically assayed at 662, 645, and 447 nm using a GENESYS 10S UV-Vis 
spectrophotometer (Thermo Fisher Scientific, Waltham, Massachusetts), corresponding 
to the absorbance peaks of chlorophyll a, chlorophyll b, and total carotenoids, respectively. 
The leaf pigment concentration for each sample was then calculated using the formula 
reported by Lichtenthaler (1987). The leaf pigment concentration was converted to leaf 
chlorophyll content using the area-to-weight ratio of each leaf sample:

	 Chl CC Rleaf i ii = 	 (13.1)

where
Chlleafi ( )µg/cm2  = leaf-scale chlorophyll content for each species i;
CCi( )µg/mg  = chlorophyll concentration for each species i; and
Ri( )g/cm2  = area-to-weight ratio for each species i.

13.2.5 M odel Inversion for Leaf Chlorophyll Content Retrieval

The estimation of leaf chlorophyll content using a physical modeling approach 
involves the inversion of a coupled RTM; a simplification of this method is described 
in Figure 13.2.

13.2.5.1  Model Selection: SLC Radiative Transfer Model
The SLC model by Verhoef and Bach (2007) is a recent development of the widely 
used PROSAIL model, which integrates a modified Hapke soil bidirectional 
reflectance distribution function (BRDF) model, a robust version of PROSPECT, and 
a 4SAIL2 model. Like PROSAIL, the SLC model has reasonable computation times 
and only requires a limited number of input parameters. Simulations are computed 
between 400 and 2500 nm at 10 nm step intervals, covering the VIS, NIR, and short-
wave infrared (SWIR) regions. The model was developed to allow a canopy with 
two different leaf types, green and brown, in combination with soil to be modeled. 
Even though the SLC model was developed with forest scenes in mind, it is the only 
coupled model that is currently known to allow heterogeneous scenes with fractional 
coverage of these elements to be simulated, and for vertically inclined leaves to be 
modeled, which is characteristic of the GNP.

13.2.5.1.1  Submodel: Hapke Soil BRDF Model
Since most canopies exhibit fractional gaps that allow radiation to interact with the 
soil background, PROSAIL includes a soil reflectance input parameter. Consequently, 
PROSAIL treats the soil background as a Lambertian surface (e.g., diffuse isotropic 
reflector), which is not ideal for sparsely vegetated canopies, such as in grasslands 
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(Verhoef and Bach 2007). The original Hapke model (Hapke 1981; Hapke and Wells 
1981) is able to calculate the hot spot effect of soil and expresses the interaction of 
radiation at the surface of a soil medium using an isotropic scattering phase function. 
Verhoef and Bach (2007) modified the model to include the use of a non-isotropic phase 
function to describe the soil background in terms of a non-Lambertian surface. Also 
included in the modified Hapke model is the spectral soil moisture effect. In order to 
simulate the effect of soil moisture, Verhoef and Bach (2007)  made use of a physically 
based model by Bach and Mauser (1994), which considers two criteria that influence soil 
reflectance: (1) the specific absorption of water, and (2) the interactive effect of water 
on soil particles.

13.2.5.1.2  Submodel: PROSPECT Leaf Optical Model
The PROSPECT model has been updated several times since its inception by Jacquemoud 
and Baret (1990), and has evolved to include new leaf biochemical constituents (e.g., 
cellulose and lignin). The model simulates the directional-hemispherical reflectance 

Prior knowledge
(e.g., field

measurements)

Measured field-based
canopy hyperspectral

reflectance data

Parameterization
of lookup table

Forward
calculation

Simulated canopy
spectral reflectance

data

Parameter retrieval from best-fitting simulated
spectra

Search operation

Best-fitting match between
simulated and measured spectral
reflectance based on the lowest

RMSE criterion

FIGURE 13.2  Overview of the physical modeling approach for retrieving chlorophyll 
content estimates at the leaf scale.
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and transmittance of various green and senescent monocotyledon and dicotyledon 
species. The model is based on the transparent plate model developed by Allen et al. 
(1969), which represents a leaf as one or more absorbing plates with rough parallel 
Lambertian surfaces. These rough surfaces are specified in order to simplify the light-
to-plate interaction, such that incident light is assumed to be partially isotropic. The 
model uses two types of input parameters: (1) a leaf structural parameter, and (2) 
leaf biochemical constituents. The leaf structural parameter specifies the number of 
compact transparent plates; by adding additional plates, a corresponding increase in 
the average number of air/cell wall interfaces is created (Jacquemoud et al. 2009). In 
other words, the model attempts to mimic the discontinuities of the internal structure 
of a leaf, which is made up of spongy mesophyll cells; leaves that contain more 
spongy mesophyll tissue will produce greater structurally induced reflectance. When 
the specific absorption coefficients derived from the leaf biochemical contents are 
added to these transparent plates, the concentrations of the various absorbers will 
reduce the reflectivity in certain regions of the spectrum (e.g., chlorophyll absorption 
in the blue and red region), thus generating reflectance spectra typical of vegetation. 
The PROSPECT version used in the SLC model is based on the specific absorption 
coefficients of chlorophyll, brown pigments, dry matter, and water and the refractive 
index of leaf material from PROSPECT-4 (Feret et al. 2008).

13.2.5.1.3  Submodel: 4SAIL2 Canopy Reflectance Model
The canopy reflectance model 4SAIL2 (Verhoef and Bach 2007) is an advanced 
two-layer version of the SAIL model (Verhoef 1984), which features a number of 
improvements in comparison with earlier versions. The original SAIL model is an 
extension of the 1D model developed by Suits (1972), and is the only true turbid medium 
model, simulating the bidirectional reflectance of turbid medium plant canopies by 
utilizing four radiative flux equations. Two diffuse fluxes (upward and downward) 
are considered to model the scattering of radiative fluxes to and from a canopy. A 
direct solar flux (e.g., sun) is then considered, to determine the amount of radiation 
that is intercepted by the canopy. The upward and downward fluxes are combined with 
the direct solar flux to derive a directional flux in the direction of the observer (e.g., 
sensor). The succeeding version of SAIL was a development by Kuusk (1991), and 
was appropriately named SAILH since it includes a function to describe the hotspot 
effect (H) as the ratio of leaf size to canopy height. SAILH would be the basis for 
future versions of PROSAIL, including GeoSAIL (Verhoef and Bach 2003), SAIL++ 
(Verhoef 2002), 4SAIL (Verhoef et al. 2007), and 4SAIL2 (Verhoef and Bach 2007). 
In order to describe vertically inclined heterogeneous canopies that feature vertical 
leaf color gradients, GeoSAIL was developed using a two-layer structure, which is 
described by a dissociation factor and fraction brown leaf area. The 4SAIL2 model is an 
extension of GeoSAIL, inheriting the two-layer structure, in addition to the singularity 
removal and speed optimization features from SAIL++ (Verhoef and Bach 2007). 
Thus, 4SAIL2 is the most recent version developed for use with the SLC model, and 
includes the crown clumping effect, which is a function of vertical crown cover and 
tree shape factor, described as the ratio of crown diameter to height (Verhoef and Bach 
2007). The crown clumping and the 2-layer structure allow heterogeneous scenes with 
green and brown elements to be better represented, such as in the case of the GNP.
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13.2.6 S cenes Evaluated Using the SLC Model

The West Block of the GNP is characteristic of a heterogeneous landscape, defined in 
this study as a canopy with multiple layers consisting of green vegetation which may 
include greater than one dominant species, senesced material, litter, and/or exposed 
soil. In order to test the capacity of the model to estimate leaf chlorophyll content, 
four quadrats with corresponding field-based canopy hyperspectral measurements 
were tested (Figure 13.3). Although unusual and not representative of the typical GNP 
landscape, a homogeneous canopy of one dominant species was selected to validate 
the ability of the model to simulate a typical green canopy using a grasslands species 
(Figure 13.3a). As shown in Figure 13.3b, a heterogeneous canopy with a single 
dominant species interspersed with standing dead vegetation and litter was selected 
to represent the typical canopies found throughout the GNP. Other areas in the GNP 
also exhibited exposed soil in addition to green and brown fractions, as in the case 
of Figures 13.3c and 13.3d, which have more than one dominant species within the 
quadrats.

13.2.7 LUT  Inversion

Many methods have been proposed to address the ill-posed inverse problem, with the 
LUT inversion approach being one of the more popular ones, owing to its simplicity 
and efficient computation times. For the inversion, a LUT was created in advance 

(a) (b)

(c) (d)

FIGURE 13.3  Scenes used to test and validate the SLC model: (a) green canopy; (b) mixed 
green and brown canopy; (c, d) mixed green, brown, and soil canopy.
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of the inverse of the SLC model through forward calculations using MATLAB and 
Statistics Toolbox Release 2012b (The MathWorks, Inc., Natick, Massachusetts), 
which computed all possible parameter combinations from the LUT and generated 
simulated reflectance curves. From there, the best parameter combination was 
identified by matching the best fit between measured and simulated reflectance. Only 
the range between the VIS and NIR (400 to 1300 nm) of the spectra curves were 
assessed since they correspond to the dominant control of leaf pigments (VIS) and 
internal leaf structure (NIR), and are thus representative of the discrete variations 
in vegetation. The criterion used to determine the best-fit spectra as a function of 
wavelengths was the lowest root-mean-square error (RMSE) criterion, which was 
calculated using the R statistical software programming language (R Foundation for 
Statistical Computing, Vienna, Austria):

	

RMSE measured LUT= −( )
=

∑1

1

2

n
R R

i

n

	

(13.2)

where
Rmeasured = measured reflectance spectra at wavelength λ;
RLUT = modeled reflectance spectra at wavelength λ in the LUT; and
n = total number of wavelengths.

Traditionally, the optimal solution is regarded as the set of input parameters 
corresponding to the best fit between measured and simulated spectra based on the 
lowest RMSE. In order to ensure that parameter estimation from the SLC model 
was robust and accurate, regularization strategies were considered. These strategies 
included the use of prior knowledge for certain parameter inputs when creating a LUT 
and exploring the use of multiple solutions because the most optimal solution may not 
have been unique (Combal et al. 2003). Instead of only reporting the optimal solution, 
the top five solutions were retrieved. Comparing the top five solutions and ensuring 
that the corresponding sets of parameter values were realistic provided confidence 
and reinforced that the solutions were indeed robust.

13.2.8 S ensitivity Analysis

By successively changing the input parameters, a simple sensitivity analysis was 
performed. This was done by changing one parameter at a time, while keeping all other 
parameters constant, to determine how much variation was attributable to x parameter. 
Seven variables, including soil moisture, Cab_green (green leaf chlorophylls a and 
b content), Cs_brown (brown leaf senescent material concentration), LAI, LIDFu 
(average leaf inclination), fB (fraction of brown leaf area), and Cv (vertical crown cover 
percentage) were noted to have substantial control over the shape and/or magnitude 
of the simulated reflectance curves (Table 13.1). Of course, not all of these variables 
were applicable to every scene, depending on the fractional coverage of either green, 
brown, or soil components. For all scenes, simulations were shown to be extremely 
sensitive to soil moisture, such that it had substantial control over the overall shape and 
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magnitude of the simulated reflectance curves. Hence, it was determined that a scene 
should have at least 25% exposed soil coverage for the soil moisture parameter to even 
be considered. Cab_green was important in explaining the majority of the reflectance 
variations in the VIS (e.g., green peak with the blue and red absorption feature of green 
leaves). In the VIS and NIR, LAI and LIDFu are understood to be the most important 
contributors to reflectance variation (Bacour et al. 2002a). It was determined that LAI 
is a key parameter for shaping and controlling the magnitude of curves, whereas the 
Cv and LIDFu parameters only had a magnitude effect. For mixed green and brown 
scenes, LAI was particularly important for controlling the red absorption feature of 
green leaves in the VIS, which would otherwise be obscured by the high-reflectance 
contribution in the same region by Cs_brown and fB. Since the regions associated with 
leaf pigment and internal structure control were of primary interest, it is unknown how 
important the contribution of Cw (leaf water content) was in the SWIR region because 
this was not tested; however, it has been reported to be the most important driver in this 
region (Bacour et al. 2002a). In sum, the appropriate proportion of each input specified 
within realistic ranges would produce the most optimal result.

Indeed, more robust sensitivity analysis methods that use rigorous statistical 
techniques have been successfully tested with PROSAIL, such as the design of 
experiments for simulation method (DOES) (Bacour et al. 2002b) or the extended 
Fourier amplitude sensitivity test (EFAST) (Bowyer and Danson 2004). Such methods 
are able to identify the appropriate parameters that explain the most observed 
variability in a simulated reflectance field at any wavelength and/or viewing direction 
(Jacquemoud et al. 2009). However, it was not in the scope of this study to perform 
such an analysis.

13.2.9  Parameterizing the LUT

Multiple LUTs were created for each scene using the SLC model. It would have been 
impractical and computationally expensive to generate only a single LUT to account 
for all of the scenes due to the extreme contrasting differences in green and/or brown 
leaf and/or soil fractions. In total, 212,885 parameter combinations were generated. Not 
reported are the multitude of parameter combinations generated from numerous LUTs 
that were built for testing and sensitivity analysis of the SLC model. The ranges of 
values (minimum and maximum) for each model parameter are presented in Table 13.1.

Certain parameters, including soil moisture, Cab_green, LAI, LIDFu, LIDFv 
(bimodality of distribution), hot (hot spot size parameter), fB, Cv, tts (solar zenith 
angle), tto (observer/viewing zenith angle), and psi (relative azimuth angle), could be 
effectively estimated or fixed based on prior knowledge from field measurements. 
Initial parameterization using chlorophyll values below 50 µg/cm2 generally produced 
poor results for mixed scenes. As a result, the range of Cab_green values were 
constrained to high chlorophyll values. The dissociation parameter (Diss) was given 
a value of 0–1, based on the scene (e.g., Diss = 1 when scenes approximated having 
all green leaves in the top layer and all brown leaves in the bottom layer; Diss = 0 
for scenes with a homogeneous mixture of green and brown leaves). The tree shape 
factor (zeta) was fixed as the default value given by the model, which was purported 
by Verhoef and Bach (2007) to have minimal impact on the modeled results. The 
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other input parameters, including Cw_green and Cw_brown (green and brown leaf 
water content, respectively), Cdm_green and Cdm_brown (green and brown leaf dry 
matter content, respectively), Cs_green and Cs_brown (green and brown leaf senescent 
material, respectively), and N_green and N_brown (green and brown structural 
parameter, respectively), were fixed to nominal values. As specified by Darvishzadeh 
et al. (2008), the N parameter was set at a value of ≥1.5 since grasses have thin leaves. 
The range of all input parameters were in agreement with existing literature (e.g., 
Atzberger et al. 2003; Atzberger 2004; Chaurasia and Dadhwal 2004; Haboudane 
et al. 2004; le Maire et al. 2004; Schlerf and Atzberger 2006; Houborg et al. 2007; 
Darvishzadeh et al. 2008; Laurent et al. 2011a,b; Clevers and Kooistra 2012).

13.3  RESULTS

The top five best-fitting simulated spectral reflectance curves were compared against 
the measured curves in accordance with the lowest RMSE criterion for four different 
canopies (Figure 13.4). Site information for each scene, with the corresponding top five 
RMSE solutions and values of the sets of parameters that had predominant control of the 
shape and magnitude of the simulated reflectance curves, are presented in Table 13.2.
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FIGURE 13.4  Top five best-fitting simulated spectra curves, based on the lowest RMSE 
criterion: (a) green canopy; (b) mixed green and brown canopy; (c, d) mixed green, brown, 
and soil canopy.
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The first scene tested was a green homogeneous canopy (Figure 13.3a). A modified 
soil spectrum with zero reflectance was used for this scene since there was no exposed 
soil present. The best-fitting simulated spectra were in agreement with the measured 
spectra given by the RMSE of 0.01 (Figure 13.4a). The corresponding input parameter 
values, such as Cab_green (50 to 54 µg/cm2), LIDFu (−0.7), and Cv (1), were comparable 
with in situ measured values, but LAI (9) was overestimated. The fit of the simulated and 
measured spectra demonstrated that the PROSPECT model was robust to simulate native 
grass species from the GNP, even though the database did not contain any biochemical 
data corresponding to any of the native grass species from the GNP. However, the scene 
only had one native grass species, and thus the result should be taken with caution (e.g., 
the SLC model may not fit other native GNP species equally well).

A heterogeneous canopy, consisting of both green and brown fractions (standing 
dead vegetation and/or litter), was tested (Figure 13.3b). A LUT was built using a zero-
reflectance soil spectrum; the simulated curves had relatively good fit (RMSE = 0.03), 
as shown in Figure 13.4b, which was able to capture the red absorption feature of the 
green vegetation in the scene. However, even when all of the input parameter values were 
specified within realistic ranges, including Cs_brown (0.4 to 0.5), LAI (2), and LIDFu 
(−0.7)—with the exception of leaf chlorophyll content being overestimated (57 to 60 µg/
cm2)—the SLC model was not able to capture the discrete variations in the NIR region of 
the measured reflectance curve. The best-fitting simulated curves demonstrated plateauing 
in the NIR, with the reflectance gradually increasing in the NIR of the measured curve, 
indicating that the SLC model could not correctly model brown material.

In order to determine the utility of the SLC model for heterogeneous scenes with 
fractional coverage of green and brown in addition to having a substantial component 
of exposed soil, two canopies were selected, with one having greater exposed soil 
(Figure 13.3d) than the other (Figure 13.3c). The best-fitting simulated curves for 
both canopies had great fit (RMSE = 0.02), with corresponding parameter values 
that were within realistic ranges of values and/or comparable with in situ measured 
values, including soil moisture (0.2 in Figure 13.4c and 0.1 in Figure 13.4d), LAI (0.58 
in Figure 13.4c and 0.37 in Figure 13.4d), LIDFu (−0.8 in Figure 13.4c and −0.8 in 
Figure 13.4d), fB (0.15 in Figure 13.4c and 0.1 in Figure 13.4d), and Cv (0.6 in Figure 
13.4c and 0.4 in Figure 13.4d). For Figure 13.4c, the SLC model was able to capture 
the chlorophyll absorption with good accuracy, but in the NIR the trajectory of the 
curve fell short of the measured curve, indicating that the combination of the brown 
and soil fraction was not being modeled correctly. On the other hand, the scene with 
greater exposed soil (Figure 13.4d) captured the reflectance in the NIR accurately, 
which was attributable to less brown coverage and greater soil influence, but failed 
to represent the green fraction correctly by not simulating the chlorophyll absorption. 
Like the mixed green and brown scene, the chlorophyll content estimates (58 to 
60 µg/cm2) are likely overestimated and inaccurate for both soil dominated canopies.

13.4  DISCUSSION

The results from this study have demonstrated the utility of the SLC model and its 
application for heterogeneous canopies with mixed fractions of green, brown, and 
soil fractions. Leaf chlorophyll content was accurately estimated for a green canopy, 
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but overestimated for mixed scenes with brown and exposed soil fractions. It was 
determined during the initial parameterization of the LUTs that if high green leaf 
chlorophyll content values were not specified for mixed scenes, the red absorption 
feature (as observed in the measured curves) would be masked and overcompensated 
for by the reflectance contribution from the brown and/or soil components in the 
simulated curves. This was likely an issue caused by the SLC model not being 
sensitive enough to detect the contribution of the discrete variation in low chlorophyll 
content values. Hence, the chlorophyll content values from the best-fitting spectra 
for the mixed scenes were likely overestimated. Even so, all results were determined 
to be highly accurate based on the lowest RMSE criterion between the best-fitting 
simulated and measured curves (e.g., RMSE = 0.01–0.16). Consequently, the use of 
the lowest RMSE criterion only considers the average error between each predicted 
(simulated) and observed (measured) wavelength value. In this respect, the lowest 
RMSE criterion may potentially match a simulated curve that is based on unrealistic 
parameter combinations with a measured curve. However, owing to the use of prior 
knowledge from the extensive collection of field measurements, this issue was avoided 
because all of the best-fitting matches had realistic parameter estimates. Hence, even 
when the simulated curves that represented the mixed scenes were generated using 
realistic parameter values and compensated for using high leaf chlorophyll content 
values, they still could not accurately match the measured curves, displaying discrete 
reflectance differences in both the VIS and NIR. This problem was likely caused by 
the inability of the SLC model to correctly model heterogeneous canopies.

The SLC model cannot accurately simulate heterogeneous scenes with green, brown, 
and/or soil fractions, and will require a recalibration based on in situ measurements 
from the GNP. Based on the findings for the green homogeneous canopy (Figure 13.4a) 
and the mixed green and brown canopy (Figure 13.4b), the SLC model was capable 
of capturing the green reflectance and red absorption features of green vegetation. 
However, for the mixed green and brown canopy (Figure 13.4b), the reflectance in the 
NIR could not be correctly modeled, indicating that the issue was likely an inaccurate 
representation of brown pigments via the PROSPECT model. In the same way, the 
two mixed scenes (Figure 13.4c and d) with exposed soil also demonstrated that the 
soil spectrums of the Hapke model were not fully representative of GNP soil types. 
Accordingly, the PROSPECT model will need to be updated to include biochemical 
compound and spectral reflectance data of brown leaves (both standing dead 
vegetation and litter) from the GNP. Also of importance, but not as essential as the 
brown pigment issue, would be the inclusion of GNP species data into the PROSPECT 
species database. Furthermore, the Hapke model will require soil spectral reflectance 
data from the GNP to be able to correctly simulate the different soil types within the 
GNP. Despite the shortcomings of the PROSPECT and Hapke models, the 4SAIL2 
canopy model accurately represented canopy heterogeneities, such as vertical leaf 
color gradients (i.e., fB and Diss) and clumping effects (i.e., Cv and zeta). The 4SAIL2 
model accurately explained the canopy structure (i.e., leaf angle distribution) governed 
by LIDFu and LIDFv, and canopy biophysical parameters such as Cv for all scenes 
and fB for mixed scenes. However, the 4SAIL2 model may have issues accurately 
assessing LAI for very dense grass canopies (e.g., overestimated for Figure 13.4a) since 
the retrieved LAI estimates for the mixed scenes were reasonably accurate.
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A study by Darvishzadeh et al. (2008) on estimating LAI and chlorophyll content 
from green heterogeneous grassland canopies through the inversion of PROSAIL 
determined that the accuracy for estimating biochemical and biophysical variables 
decreased as the number of species in a scene increased. Presumably, the issue 
with PROSAIL was a result of the SAILH canopy model being unable to address 
vertically inclined canopies characteristic of grass species. This discrepancy would 
later be addressed by the 4SAIL2 model, as used in the SLC model. Consequently, it 
is unknown whether the SLC model truly rectifies parameter retrieval for vertically 
inclined green canopies featuring multiple species because a green canopy with more 
than one dominant species could not be tested in this study. The closest representation 
were the results from the soil-dominated scenes that had multiple species. Even when 
accounting for additional heterogeneous discontinuities, such as multiple layers (green, 
brown, soil components) with multiple species, the parameter retrieval was highly 
accurate, with the exception of leaf chlorophyll content. Hence, the effectiveness 
of the SLC model for canopies that have multiple layers and species is excellent, 
despite the shortcomings discussed previously. To this end, Darvishzadeh et al. (2008) 
suggested that 3D models may be able to more accurately portray heterogeneous 
grassland canopies. However, since 3D models are conceptually and computationally 
complex and require a high number of input parameters, this option is not practical, 
especially for operational monitoring programs. Darvishzadeh et al. also suggested 
that the then recently introduced SLC model could provide improved parameter 
retrieval, which, in the case of this study, has been tested and validated with success.

The SLC model has been successfully validated for homogeneous (e.g., Laurent 
et al. 2011a,b) and heterogeneous (e.g., Hernández-Clemente et al. 2012) forest canopies, 
homogeneous precision agriculture canopies (Migdall et al. 2009), and homogeneous 
grassland canopies (e.g., Dasgupta and Qu 2009; Dasgupta et al. 2009). The literature 
review revealed no previous studies that had attempted the estimation of vegetation 
biochemical and/or biophysical variables from heterogeneous canopies with mixed 
proportions of green and brown, with or without soil fractions. Any studies pertaining 
to the use of RTMs for retrieval of biochemical and/or physical parameters from 
heterogeneous canopies (e.g., Darvishzadeh et al. 2008; Vohland and Jarmer 2008; Si 
et al. 2012; Hernández-Clemente et al. 2012) have only been done for green canopies 
without the influence of brown material. However, of the studies that used the SLC 
model in the inverse mode to estimate biochemical and/or biophysical variables, two 
did retrieve green and brown parameter estimates from homogeneous canopies. For 
instance, a homogeneous canopy of winter wheat was assessed by Migdall et al. (2009) 
in a precision agriculture study. They successfully employed the SLC model to estimate 
green LAI and fraction of senescent material. The other study was an assessment of 
three homogeneous Norway spruce stands by Laurent et al. (2011a). They successfully 
used the SLC model to retrieve accurate biochemical and biophysical parameters, such 
as green leaf chlorophyll content and plant area index, respectively, as well as estimates 
for bark material. In the case of both studies, the authors were likely able to estimate 
brown leaves (senescing leaves and bark material) accurately due to the PROSPECT 
database being developed with biochemical and reflectance data of brown leaves that 
were more representative of forest and agricultural crop species, which evidently was 
not characteristic of brown material in the GNP.
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13.5  CONCLUSION

This study tested the utility of the SLC model to estimate chlorophyll content in the inverse 
mode for heterogeneous canopies characteristic of a mixed-grass prairie ecosystem. The 
use of prior knowledge greatly improved processing times and helped circumvent the ill-
posed inversion problem. By using the lowest RMSE criterion, leaf chlorophyll content 
was accurately estimated for a green canopy (50 to 54 µg/cm2), but overestimated for 
mixed canopies with green and brown fractions (57 to 60 µg/cm2) and for mixed canopies 
with green, brown, and soil fractions (58 to 60 µg/cm2). Canopy biophysical parameters, 
such as Cv for all scenes and fB for mixed scenes, were accurately estimated. The results 
confirmed the potential of model inversion for estimating leaf biochemical parameters 
and canopy biophysical parameters for heterogeneous canopies with multiple layers and 
species using hyperspectral measurements.

The SLC model will require refinements to be able to accurately assess and 
estimate the radiation field for heterogeneous canopies with multiple layers (e.g., 
green, brown, and soil components) and multiple species. Results from this study 
demonstrated that the SLC model was able to accurately simulate a homogeneous 
green canopy in terms of leaf biochemical parameters. Accurate canopy biophysical 
parameter estimates were also retrieved, with the exception of LAI, which indicated 
that the SLC model may have issues simulating very dense green canopies. On the 
other hand, when the SLC model was tested for heterogeneous canopies with multiple 
layers and species, it had issues capturing the discrete reflectance variations when 
compared to the measured reflectance data. Nonetheless, the parameter retrieval 
was highly accurate in terms of canopy biophysical parameters for mixed scenes, 
but demonstrated an overestimation of leaf biochemicals such as leaf chlorophyll 
content. The limitation of the SLC model is most likely a result of the model not being 
specifically calibrated for GNP species (specifically brown pigments) and soil types.

Any future work with the SLC model for heterogeneous grassland canopies with 
green, brown, and/or soil fractions will need to consider updating the PROSPECT 
and Hapke models. Once the appropriate changes are implemented, improvements 
in parameter retrieval should be expected, especially for leaf chlorophyll content 
estimation; thus, the use of the SLC model for temporal work can in principle be 
applied to different remote sensing data over the GNP and similar heterogeneous 
environments. Recent progress in the modification of the SLC model has involved 
the recalibration of the stand-alone PROSPECT model; work on the Hapke model has 
yet to be addressed. A preliminary examination of the PROSPECT model revealed 
poor performance in simulating leaf spectra of senescing and senesced leaves. This 
was expected because the PROSPECT model was calibrated using a green leaf data 
set (Feret et al. 2008). Since green and senesced leaves have different biophysical and 
biochemical properties, a new set of parameters needs to be considered for simulating 
spectra of senesced leaves in the PROSPECT model. For instance, chlorophyll or 
water content is very minimal in senesced leaves. However, senesced leaves have 
biochemical components that do not exist in green leaves, such as humic and 
fulvic acid. For senesced leaves, the biochemical parameters that are considered in 
calibrating PROSPECT are initial and advanced decay parameters, including humic 
and fulvic acid, brown pigments, water, and dry matter.

(c) ketabton.com: The Digital Library



278 High Spatial Resolution Remote Sensing

The recalibration of PROSPECT has included the collection of leaf samples of 33 
monocot species (e.g., grasses, forbs, and crops) at five senescence stages (e.g., from 
freshly senesced to fully decayed) as experimental material. Half of the samples 
were used to recalibrate the model, and the other half were used for validation. 
Reflectance and transmittance of all leaf samples were measured using an integrating 
sphere equipped with an ASD spectroradiometer. The biochemical components were 
analyzed following the protocol of Van Soest et al. (1991) and Sparks et al. (1996). 
After acquiring the spectra and biochemical components of leaf samples, the model 
recalibration was conducted based on the procedure proposed by Feret et al. (2008). 
The recalibration of PROSPECT was divided into two steps: (1) calibrating the leaf 
thickness for each sample, and (2) determining the specific absorption coefficients for 
each chemical component and quantifying the refraction index. After the PROSPECT 
model is recalibrated, it will be integrated into the SLC model, which will then be 
evaluated for heterogeneous canopies.
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14 Wetland Detection 
Using High Spatial 
Resolution Optical 
Remote Sensing Imagery

Amy B. Mui

14.1  INTRODUCTION

The applications of remote sensing research extend to a variety of different 
ecosystems found across the globe. Wetlands are particularly important despite 
covering only 4%–6% of Earth’s surface, or 5.3 to 12.8 million km2 (Zedler & 
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Kercher, 2005). In some areas, they can cover >20% of the landscape, such as the 
vast peatlands of the boreal region of Canada (Mitsch & Gosselink, 1993). The high 
rate of biological productivity of wetlands, strong natural selection pressures, and 
diverse aquatic environments have produced many species of plants and animals 
that are not found anywhere else (Gibbs, 1993). As both sources and sinks of carbon 
depending on their age, composition, and surrounding environmental conditions 
(Kayranli et  al., 2010; Roulet 2000), wetlands also play a strong role in global 
climate projections.

Obvious benefits to human society are provided such as flood abatement, climate 
change mitigation, and the filtration of ground water (Mitsch & Gosselink, 2000). 
An estimated 40% of the value of global ecosystem services is provided by wetlands 
(Zedler, 2003), yet it is estimated that more than half of peatlands, depressional 
(low-lying) wetlands, riparian zones, lake littoral zones, and floodplains have been 
lost, with little sign of abatement. (Verhoeven & Setter, 2010; Zedler & Kercher, 
2005). Existing studies suggest that humans and human-related activities are the 
dominant agents of wetland loss and degradation primarily through conversion to 
agriculture and hydrological modification such as damming and pumping. These 
practices alter the natural timing of water fluctuations responsible for the diversity 
of vegetation communities and habitat types found in wetlands (Brock et al., 1999).

A critical step in effective management of declining wetland ecosystems is 
accurate detection. Wetlands are often located in remote and inaccessible locations, 
with borders that can be transitional in nature, so identifying and mapping these 
ecosystems presents a significant challenge. Compared to traditional methods of 
ground surveying, which require a substantial investment in labor and time, and 
aerial photography, which is costly and limited by spectral range and local weather 
conditions, imagery from satellite-borne sensors offers many advantages to the 
detection of wetlands. Repeat coverage over large spatial extents and across a variable 
range of the electromagnetic spectrum allows spaceborne remote sensors to provide 
a wealth of spatially explicit data for the detection of wetland ecosystems.

14.1.1 C hallenges and Considerations

Despite the suitability of satellite data for studying wetlands, some characteristics of 
wetlands may confound a remote-sensing-based approach. The term wetland refers 
to multiple classes of aquatic-adapted ecosystems that vary broadly in topography, 
biotic communities, and hydrologic form and function. Broad classes include bogs, 
fens, swamps, marshes, and open shallow water. Yet this diversity of wetland forms 
does not always manifest as a unique spectral response. Some wetlands also tend to 
occupy transition zones between purely aquatic and purely terrestrial ecosystems, 
which presents a challenge when the goal is to define a logical boundary between 
wetland and upland. Wetlands themselves can also be transitional in nature (i.e., a 
fen may transition to a bog over time). To aid in the discrimination, plant species are 
commonly used as an indicator of the presence and class of wetland. The presence 
of acid-loving Sphagnum moss, grasses and sedges is often indicative of a bog 
or fen, whereas water lilies, reeds, and cattails indicate nutrient-rich marshes or 
swamps. However, key species used to distinguish between wetland classes may not 
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always manifest as a unique spectral response, nor will they always be present in 
homogenous stands large enough to be captured as pure pixels. Rapidly colonizing 
North American invasive species such as Phragmites spp. may also confound 
accurate wetland detection because they outcompete native plant species. Despite 
this challenge, it is important for remote-sensing-based detection of wetlands to 
identify the specific class not solely to achieve a higher classification accuracy, but 
also because failure to correctly categorize wetlands can have important downstream 
implications on quantifying their global impact. Bogs and fens, for example, have 
considerably greater carbon storage potential than marshes and swamps due to the 
accumulation of belowground peat, and have been found to be a stronger emitter of 
methane (Moore et al., 1994).

Wetlands can also exist in highly variable shapes and sizes, ranging from the vast 
Pantanal wetlands in Brazil, which cover more than 150,000 km2, to the glaciated 
prairie pothole region of central Canada, where almost 88% of wetlands are less than 
0.4 ha in area (Halabisky, 2011). In the context of remote sensing, delineating these 
small and ephemeral wetlands represents a key challenge (Ozesmi & Bauer, 2002), 
which is likely why most studies have centered on larger wetlands. However, pools 
as small as 0.2 ha represent important, often critical, habitat for wetland-dependent 
wildlife (Semlitsch & Bodie, 1998), and protection of small wetlands is vital for the 
maintenance of biodiversity (Gibbs, 1993; Semlitsch & Bodie, 1998). The variable 
size and shape of wetlands requires that a sensor with an appropriate spatial resolution 
is selected to capture the minimum mapping unit required. Medium- and coarse-
resolution sensors such as AVHRR, MODIS, and Landsat may be appropriate for 
larger wetlands, while high spatial resolution sensors (<5 m) would be required to 
capture smaller wetlands. Depending on the size and heterogeneity of the target 
wetland feature relative to the spatial resolution, the mixed pixel problem can become 
a significant concern in wetland detection due to factors such as transitional borders, 
variable size, irregular shape, and mixed composition. Studies encompassing all 
wetland classes must include parameters that capture the range of characteristics 
found in all wetland classes in the study area (Table 14.1), while research questions 
that focus on a single wetland type must be able to uniquely identify that single class 
from among other similar wetland classes.

Another consideration rests on the timing of image acquisition over wetlands. 
Depending on their hydrologic characteristics, wetlands may be seasonally, 
episodically, or continuously inundated. Seasonal variation is not unique to wetland 
ecosystems, but is arguably more pronounced because this rapid variability in 
hydrologic regime is often the driver for the high biodiversity found in wetlands. 
Consequently, remote sensing data must be acquired during a narrower window than 
most terrestrial regions due to the rapid change in both water extent and vegetation 
cover. Delineation of boundaries often requires leaf-off data from early spring, 
when water levels are high after the spring melt and boundaries can be visualized. 
Mapping of aquatic vegetation communities requires imagery acquired later in the 
growing season.

Despite these challenges, wetlands have been studied using remote sensing data 
continuously since the availability of the first satellite data, and this exploration 
continues to cover novel aspects of wetland study.
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14.1.2 B rief History of Wetland Remote Sensing Applications

Wetlands have been studied using all major satellite systems and a variety of 
classification methods (Ozesmi & Bauer, 2002). Frequently used satellite sensors 
for wetland detection include multispectral and hyperspectral imaging systems, 
radar systems, and LiDAR sensors. Active sensors have been used to map temporal 
food dynamics (Martinez & Le Toan, 2007), improve detection of below-canopy 
inundation (Lang & McCarty, 2009), estimate water storage (Grings et al., 2009), 
and assess soil moisture (Kasischke et al., 2009). Other sensors, such as microwave 
radiometers, have been used to estimate methane emissions in the Amazon basin 
(Melack et al., 2004). Notable studies using optical sensors include the large-scale 
mapping of aquatic vegetation and habitat features across the Great Lakes shoreline 
in Ontario, Canada, using IKONOS data and achieving an overall classification 
accuracy of 90% (Wei & Chow-Fraser, 2007); a multitemporal SPOT-5 classification 
tree approach to monitoring aquatic marsh vegetation in southern France, using a 

TABLE 14.1
Land Cover Class Descriptions Adapted from Anderson et al. (1976) and the 
Canadian Wetland Classification System (NWW, 1997)

Class Description

Barren Land Land of limited ability to support life; less than one-third of the area has 
vegetation or other cover (e.g., sands, rocks, thin soil).

Forested Upland Closed-canopy deciduous, coniferous, or mixed forests.

Herbaceous Upland Land where vegetation is dominated by a mix of grasses, grasslike plants, forbs, 
shrubs, or bush; either naturally occurring or modified (e.g., old fields, 
roadside vegetation, meadows, mixed-composition short vegetation upland).

Water All areas that are persistently water covered (e.g., lakes, reservoirs, streams, 
bays, estuaries)

Wetland Bog, fen (or wet meadow), swamp, marsh, shallow open water.

  Marsh A shallow water wetland with water levels that can fluctuate daily, annually, or 
seasonally, resulting in highly variable hydrology. Receives water from the 
surrounding catchment as well as precipitation. Marsh vegetation is comprised 
of emergent aquatic macrophytes such as graminoids (e.g., rushes, reeds, 
sedges), floating-leaved species (e.g., lilies) and submergent species (e.g., 
water milfoil). Marsh plant communities are seasonal and dynamic, often 
shifting with water levels.

  Swamp Forested or wooded wetland, dominated by minerotrophic groundwater and a 
water table below the ground surface of the swamp for the majority of the year. 
Vegetation dominated by coniferous or deciduous trees or tall shrubs 
(generally over 30%).

  Bog A peat landform, raised or level with the surrounding terrain and isolated from 
runoff and groundwater, receiving water primarily from precipitation, fog, and 
snowmelt. Water table sits at or slightly below the bog surface. Treed or 
treeless, and usually covered with Sphagnum spp. and shrubs, or woody 
remains of shrubs.
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variety of vegetation indices with accuracies greater than 80% (Davranche et al., 
2010); and a Landsat Thematic Mapper (TM) approach combined with image texture 
and ancillary data to model palustrine wetland occurrence in Yellowstone National 
Park, with error rates less than 14% (Wright & Gallant, 2007). Often, a combination 
of sensors has proven advantageous. Prigent et al. (2001) described a global study 
to map wetland inundation using passive and active microwave sensors along with 
visible and infrared measurements. Major inundated wetlands, such as the Pantanal, 
riverine wetlands along the Amazon, and the Niger Delta, were well delineated; 
however, the accuracy assessment was hampered by the scarcity of quantitative 
observations across the globe. Others have mapped wetlands in the context of the 
Canadian Wetland Inventory (CWI) using a combination of RADARSAT-1 and 
Landsat enhanced TM (ETM) images in Quebec, Canada, with global accuracy 
values between 67% and 80% (Grenier et al., 2007). Similarly, Dingle-Robertson 
& King (2014) mapped wetlands in the context of the Ontario Wetland Evaluation 
System (OWES) using multitemporal WorldView-2, Landsat 5, and RADARSAT-2 
data. Similarly, time series image data have been found useful for wetland boundary 
and change detection (e.g., Davranche et al., 2010; Johnston & Barson, 1993), while 
digital elevation models (DEMs) have proven useful to aid in delineation of wetlands 
by separating floodplains and inland valley wetlands from other landforms of higher 
elevation (e.g., Mwita et al., 2013).

Identifying and mapping wetland vegetation by species or type (e.g., floating, 
emergent, or submerged aquatic vegetation) represents another common objective. 
For species-level mapping, hyperspectral sensors have become a necessity and have 
been used successfully to discriminate between aquatic plant species (e.g., Becker 
et al., 2007; Hirano et al., 2003; Zomer et al., 2009). In mapping wetland species, 
many researchers have turned their focus toward identification of invasive species, 
such as Phragmites australis. The negative impacts of this species are related to its 
propensity to produce dense monospecific stands, outcompete native plant diversity, 
and subsequently reduce the overall richness of flora and associated faunal assemblages. 
However, the ability of satellite imagery to map to the species level requires further 
development of a universal library of spectral signatures because it is unclear whether 
all species or vegetation communities of interest possess unique signatures.

Several studies have developed successful methods for identifying Phragmites 
from remotely sensed imagery. Pengra et al. (2007) demonstrated the utility of EO-1 
Hyperion data (220 unique spectral bands) for mapping Phragmites, using a reference 
spectrum of pure stands and a spectral correlation mapper algorithm to compare with 
the Hyperion raster image. Monodominant stands of the invasive plant were classified 
with a promising overall accuracy of 81.4%. The spatially varied Phragmites stands 
were arranged in linear clusters parallel to the shoreline, which was not optimal 
given the coarse spatial resolution (30 m) of Hyperion data, but provided a useful 
tool for wetland managers nonetheless. Using a multi-imagery technique, Walsh et al. 
(2008) leveraged the high spectral resolution of Hyperion data to identify unique plant 
spectral signatures, with high spatial resolution (2.44 m) QuickBird imagery to map 
invasive wetland plants in the Galapagos Islands using a spectra unmixing approach. 
Other studies have also found success by pairing hyperspectral ground or airborne 
radiometers with multispectral satellite imagery to successfully map wetland plant 
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species (e.g., Yuan & Zhang, 2006) or wetland degradation (e.g., Schmid et al., 2005). 
Collectively, these studies demonstrate that improved results can be obtained by 
integrating multiple sensors, which may become a necessity in order to obtain the 
appropriate spectral, spatial, and temporal resolution for species mapping.

Although satellite data from coarse spatial resolution satellites have been used in 
many studies, they are limited by their inability to identify wetlands that are small 
in size, long, or narrow in shape (Ozesmi & Bauer, 2002), or to distinguish between 
spatially complex features within wetlands. Coarser 30 m data require a minimum 
of 9 pure pixels (0.81 ha) to consistently identify a feature (Ozesmi & Bauer, 2002), 
resulting in many mixed pixels and small wetlands below this threshold being missed 
(Klemas, 2011; Powers et al., 2011). Popular Landsat imagery may be insufficient 
to provide the required detail and resolution for some applications of wetland use 
mapping (Mwita et al, 2013). The following section will discuss the use of high spatial 
resolution imagery in wetland detection.

14.2 � HIGH SPATIAL RESOLUTION IMAGERY 
IN WETLAND REMOTE SENSING

Wetlands are often distinguished by high spatial complexity and temporal variability; 
therefore, they are best observed with sensors capable of providing a combination of 
high spatial, spectral, and temporal resolution. Advances in sensor technology continue 
to provide numerous options to match a research question or application with an 
appropriate sensor, though selection entails trade-offs between sensor benefits and cost. 
This section will focus on the advantages conferred by high spatial resolution sensors 
for wetland remote sensing detection at a nominal ground pixel resolution of <2 m.

While freely available satellite imagery such as Landsat are publicly available, 
the cost associated with obtaining high spatial resolution satellite data can be high. 
Despite this cost it is still significantly lower than the cost required to support field 
surveying or aerial photographs (see Wei & Chow-Fraser (2007) for a cost breakdown) 
while providing the advantage of repeat coverage for monitoring temporal trends 
and the addition of data outside of the optical range (e.g., in the near-infrared 
[NIR] region). Current work with high spatial resolution sensors has been used to 
successfully monitor the change in aquatic vegetation in coastal marshes (Wei & 
Chow-Fraser, 2007), to discriminate between submerged and emergent wetland 
vegetation (Davranche et  al., 2010), and to estimate marshland composition and 
biomass in riparian marshes (Dillabaugh & King, 2008).

While high-resolution imagery provides the spatial resolution to capture smaller 
wetlands, it results in greater within-class spectral variance, making separation 
of mixed or similar land cover classes more difficult than with coarser-resolution 
imagery (Hu and Weng, 2011; Klemas, 2011). To address this increased variance, 
alternative classification approaches have been employed. In recent decades, object-
based image analysis (OBIA), or geographic object-based image analysis (GEOBIA), 
has shown superior performance compared to traditional pixel-based methods. 
Packaging of pixels into discrete objects minimizes the variance (noise) inherent in 
high spatial resolution images, allowing the objects, rather than individual pixels, 
to be classified. The object-based approach has been successfully used in wetland 
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research for classifying macrophyte communities in coastal marsh habitat (Midwood 
& Chow-Fraser, 2010; Rokitnicki-Wojcik et al., 2011), evaluating the structure of 
patterned peatlands (Dissanska et al., 2009), and mapping multiple classes of wetlands 
according to the Canadian Wetland Inventory (Grenier et al., 2007). Fournier et al. 
(2007) reviewed wetland mapping methods to be applied to the Canadian Wetlands 
Inventory program and identified the object-based approach as most appropriate due 
to its flexibility and ability to address the spatial heterogeneity of wetlands.

14.3 � CASE STUDY: DETECTING FRESHWATER 
WETLANDS IN ALGONQUIN PARK, ONTARIO, 
CANADA, USING GEOEYE-1 IMAGERY

In this section, a case study is presented that demonstrates an effective approach 
for detecting inland freshwater wetlands of varying size, shape, and composition. 
This method was evaluated on two freshwater wetlands that demonstrate significant 
change in open water extent and spatial distribution of macrophytic communities 
within a single growing season (Figure 14.1).

Multispectral GeoEye-1 satellite imagery was acquired during September 2012 and 
May 2013 over a study site in southern Ontario (44°00′ N, 80°00′ W). Multiseason 
images were processed and classified using a hierarchical image object segmentation 
scheme and a supervised k-nearest neighbor (k-NN) classifier. Ancillary spatial data, 
such as the normalized difference vegetation index (NDVI), elevation, and texture 
layers, were integrated into the model, while ground data and aerial imagery were 
used to refine, verify, and validate maps.

(a)

(c) (d) (e)

(b)

FIGURE 14.1  Seasonal change in inundation and vegetation extent in two freshwater 
marshes in southern and south-central Ontario. Algonquin Provincial Park in (a) May and (b) 
September. Oakland Swamp in rural Brantford, Canada, in (c) April, (d) June, and (e) August.
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Approaches to wetland classification have encompassed traditional unsupervised 
(Jensen et al., 1995; Sawaya et al., 2003) and supervised algorithms (Wang et al., 
2004; Yu et al., 2006), as well as fuzzy methods (Benz et al., 2004) and object-
based approaches (Blaschke, 2010; Blaschke et al., 2014). They have also included 
more complex machine learning algorithms such as classification tree methods 
(Midwood & Chow-Fraser, 2010; Wright & Gallant, 2007), including random 
forest classification (Corcoran et al., 2013), with some complex models drawing 
from numerous data layers to discriminate among wetland types (Wright & Gallant, 
2007). As a result, it is not surprising that many researchers have devoted entire 
studies to comparing the utility of different methods (Dingle-Robertson & King, 
2011; Duro et al., 2012; Harken & Sugumaran, 2005; Shanmugam et al., 2006). 
However, no general consensus has been reached on a universal optimal method 
of identifying wetlands. The object-based approach has been used extensively 
in image analysis since the start of the twenty-first century, with hundreds of 
studies conducted on this topic (e.g., review by Blaschke (2010)). This case study 
demonstrates a GEOBIA supervised classification approach to identify and delineate 
inland freshwater wetlands in a managed provincial park in southern Ontario, using 
high spatial resolution (1.84 m) GeoEye-1 satellite imagery.

14.3.1 S tudy Area

The region encompassed by Algonquin Provincial Park in southern Ontario, Canada, 
represents 7630 km2 of protected land, including approximately 340 ha of wetlands 
of all classes, as defined by the Canadian Wetland Classification System (NWWG, 
1997). Established in 1893, it is the oldest provincial park in Canada, and contains 
a unique mixture of coniferous and deciduous forest types, allowing the park to 
support an uncommon diversity of native flora and fauna. The park also protects the 
headwaters of five major watersheds and encompasses more than 2,000 lakes, which 
make up about 10% of the total park area (Figure 14.2).

Logging activity occurs in the study area, as well as recreational use by park 
visitors, though the study site was situated in a less heavily visited section. Dominant 
wetland types in the area include freshwater inland and lacustrine (lake-associated) 
wetlands, swamps, and bogs. Several threatened species are known to exist in the 
park, including wetland-associated species such as the Blanding’s turtle (Emydoidea 
blandingii). Due to the park’s considerable ecological assets, knowledge of wetland 
class, locations, and boundaries are important for management and mitigation of 
negative effects from anthropogenic activities within the boundaries of the park and 
for regular monitoring of ecosystem health.

14.3.2 S atellite Data

Data were collected by the spaceborne GeoEye-1 sensor on May 23, 2013. and 
September 12, 2012. In the study area, full deciduous leaf-on conditions are typically 
reached by the end of May or beginning of June, while leaf-off conditions generally 
occur by late October or early November. All efforts were made to acquire imagery 
within the same year; however, this was not possible due to cloud cover over the 
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site. The imagery had a pixel size of 1.85 m, across four spectral regions (blue [450–
510 nm]; green [510–580 nm]; red [655–690 nm]; near-infrared [780–920 nm]), at a 
radiometric resolution of 16 bits. GeoEye-1 data were selected because they offered a 
balance between high spatial resolution imagery, spectral coverage, and cost. While 
a sensor with a spectral band encompassing the water-sensitive shortwave infrared 
region (approximately 10–100 µm) would have been useful for wetland detection, 
no high spatial resolution sensor with this criterion was available at the time of the 
study. Currently, most high spatial resolution sensors of <2 m pixel size operate in the 
visible and near-infrared (VNIR) regions only (e.g., GeoEye, SPOT 6/7, WorldView-1 
and -2, Pleiades-1A and -1B, QuickBird). Image preprocessing and processing is 
demonstrated in the flowchart (Figure 14.3) and described subsequently.

NWT

Yukon

BC
Alberta

Sask.

Manitoba

Ontario

Nunavut

Quebec

NFLD

PEI
NB

NS

Ontario

Algonquin
Provincial Park

N

FIGURE 14.2  Map of study area located in Algonquin Provincial Park, Ontario, Canada.
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14.3.3 I mage Preprocessing

The images were atmospherically corrected using the broadband visible/NIR 
algorithm for 4-band VNIR sensors (Richter, 1996; Richter et al., 2006), including 
correction for thin cloud contamination across diverse surfaces (Zhang et al., 2002), 
which is a technique optimized for high spatial resolution imagery (Richter, 1996). 
This algorithm required three visible and one near-infrared band for correction 

DEM NDVI layer Texture layer

Dominant landcover
types segmented

(excluding wetlands)

Whole wetlands and
remaining landcover

classes segmented

Nearest neighbor
classification

Whole wetlands
segmented into
smaller objects
(child classes)

Multiresolution segmentation
level 1 (fine)

Multiresolution segmentation
level 2 (medium)

Multiresolution segmentation
level 1 (coarse)

Classified whole
wetlands (parent

class)

Remaining image
objects (including

wetlands)

Final landcover map

4-band GeoEye-1
imagery (May/Sept)

FIGURE 14.3  Multiscale segmentation process used to segment images at three levels, 
with a hierarchical parent-child relationship developed between wetlands and within wetland 
components at the medium (Level 2) and fine (Level 1) scale.
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(Richter et al., 2006), which is a common band configuration for many high spatial 
resolution Earth-observing satellites (e.g., GeoEye-1, SPOT-6) and for economical 
(reduced-band) options of imagery, such as those from WorldView-2, which 
provides data at eight (full) or four (reduced) bands. Radiometric normalization 
was implemented in PCI Geomatica (ATCOR3 module, Geomatica version, 2014), 
though cloud cover and haze was minimal. After atmospheric correction, the images 
were projected to the Universal Transverse Mercator projection datum (NAD83, 
UTM Zone 17) and georeferenced to a root-mean-squared error (RMSE) of less 
than 2 pixels using a first-order polynomial transformation and a nearest neighbor 
resampling method, corresponding to less than 4 m ground error. The processed 
image was clipped to a 40 km2 boundary using ArcGIS version 10.2 (Environmental 
Systems Research Institute, Redlands, California). The panchromatic layer was not 
used because it increased processing time to unrealistic lengths. This is a common 
limitation of high spatial resolution data.

14.3.4 C lassification Method

14.3.4.1  Input Layers
Prior to classification the image was segmented into objects. Image objects were 
constructed from seven features related to image attributes such as image texture 
(localized neighborhood spectral variation), elevation, and NDVI. Layers included 
four multispectral bands from GeoEye-1 (blue, green, red, and near-infrared), a DEM 
layer, an NDVI layer, and a standard deviation texture layer (Figure 14.4).

A 10 m DEM was acquired from the Ontario Ministry of Natural Resources and 
Forestry, which was interpolated from a digital terrain model (DTM), a contour 
map, spot height data, and a water virtual flow map to a ±10 m vertical precision. 
The DEM for each image scene was resampled to 2 m to match the resolution and 
alignment of the other input layers. Resampling the DEM did not provide any 
additional information but ensured continuity in pixel size across all input layers 
and avoided a coarser resolution affecting the boundaries of image objects. Elevation 
was included as an input layer because wetlands and water bodies are known to sit 
topographically low in the landscape due to their close association with ground 
water and surface runoff (Mitsch & Gosselink, 2000). Although depressions in the 
DEM layer are likely areas where water will pool, image texture has also been 
utilized for wetland delineation because wetland vegetation is often smaller and 
highly interconnected compared to terrestrial vegetation such as trees. Texture 
information refers to localized spatial variation in the spectral brightness of a digital 
image and has a high potential for revealing differences between classes in remotely 
sensed imagery (Berberoğlu et al., 2010). Texture measures were derived directly 
from GeoEye-1 satellite imagery by creating a first-order texture layer based on the 
standard deviation of the spectral layer(s) within a 3 by 3 pixel moving window. 
However, image texture does not correlate to the density of vegetation, whereas 
spectral vegetation indices are highly correlated with vegetation abundance. NDVI 
is a well-established indicator of live green vegetation (Rouse et al., 1974), and was 
created from the red and near-infrared bands of the multispectral data according to 
the following equation:
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where ρ is the reflectance of the visible (red) and near-infrared (nir) bands of 
the electromagnetic spectrum. NDVI values range from −1 to 1; higher NDVI 
values indicate a greater coverage of live green vegetation, while values less 
than zero typically do not have any ecological meaning. NDVI has been used to 
separate water from dry land and for delineating wetland boundaries (Ozesmi & 
Bauer, 2002). All final image layers were weighted equally in the multiresolution 
segmentation process.

14.3.4.2  Multiresolution Segmentation
In the object-oriented approach, both spectral and spatial (or contextual) parameters 
are used to define an image object, whereas traditional per-pixel classifiers treat each 
individual pixel independently of its neighbors. This study employed the fractal net 
evolution approach (FNEA) to segmenting images (Baatz & Schäpe, 2000), which 

(a) (b)

(d)

N

0.75 1.5 3 km0

(c)

FIGURE 14.4  GeoEye-1 image over the study area. Input layers include (a) four multispectral 
bands (blue, green, red, near-infrared) shown in false color composite, (b) NDVI layer, (c) 
standard deviation texture layer, and (d) digital elevation layer.
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was implemented through the multiresolution segmentation algorithm in Definiens 
Developer 7.0 (formerly eCognition) (Munich, Germany). Segmentation parameters 
of scale, color, and shape control the size, shape, and resultant spectral variation 
within segmented image objects. Weights of color and shape sum to 1, while shape 
is further divided into smoothness (relating to the smoothness of object edges) and 
compactness (relating to the closeness of an object shape with a circle), which sum 
to 1 (Definiens, 2008). The color parameter was set to 0.9 to place greater emphasis 
or weight on pixel values during the segmentation decision process. The 0.1 shape 
parameter was weighted equally to balance the compactness and smoothness 
of object boundaries equally. The most critical step is the selection of the scale 
parameter (unitless), which controls the size of the image objects by sequentially 
merging pixels pairwise, with the intent of minimizing the heterogeneity within 
(Blaschke & Hay, 2001; Mallinis et al., 2008). The scale parameter sets a threshold 
of homogeneity which determines how many neighboring pixels can be merged 
together to form an image object (Benz et al., 2004).

Three levels of scale parameterization were used to capture different land cover 
classes in a multiscaled segmentation approach. Segmentation scale designations of 
coarse, medium, and fine are relative terms relating to image composition and desired 
specificity of the target feature. Dominant land cover classes were segmented at the 
highest (coarse) level, while remaining classes were delineated at the medium level. 
Entire wetlands were segmented and defined as objects at this midrange scale, and 
further segmented at the finest scale level to delineate components within wetlands to 
classify them into as marsh, swamp, fen, or bog. These smaller (child) objects retain 
links to their larger (parent) class, which employs a true multiscale approach through 
applying vertical constraints in segmentation and classification. Classification for 
specific land cover classes was thus completed at each scale level, with remaining 
unclassified objects undergoing further segmentation, followed by classification. A 
thematic road was used to extract the road network for each scene and ensure parcels 
of intervening land were accurately delineated.

14.3.4.3  Note on Selection of an Appropriate Scale Parameter
There has been much debate surrounding the method of scale parameter selection, 
which determines the ultimate size and shape of the image objects created during the 
segmentation process. Many studies have employed a visual approach to selecting 
the best scale parameter, based on the premise that the human eye is best capable 
of interpreting and recognizing complex patterns in conjunction with neighborhood 
context (Benz et al., 2004; Myint et al., 2011). This approach is especially fitting 
for wetlands that can be highly variable in both size and shape, particularly when 
visual assessment is guided by field knowledge, thematic maps, and ancillary aerial 
imagery. However, opponents of this method point to the subjectivity of such an 
approach and the limitations for repeatability across different study areas. With 
the continuous advent of new computer-based algorithms, multiple quantitative 
and automated approaches to selecting the scale parameter have been developed, 
including automated parameterization using the potential of local variance to detect 
scale transitions (Drǎguţ et al., 2010, 2014), supervised methods that use various 
indices to describe the discrepancy between reference polygons and corresponding 
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image objects (Clinton et al., 2010; Liu et al., 2012), and a comparison index using 
both topological and geometric object metrics (Moller et al., 2007). However, there 
is no perfect algorithm that is appropriate for all images and a certain element of 
trial, error, and repetition is inherent to the overall process of scale selection and 
evaluation. In this case study, scale selection was based on a combination of visual 
assessment using expert knowledge of the area as well as a semiautomated quantitative 
method (Modified Euclidean Distance 3; Yang et al., 2015) to select the optimal scale 
parameter. Additional details regarding this approach can be found in Mui et al. 
(2015) and Yang et al. (2015).

14.3.4.4  k-NN Classification
The nearest neighbor, or k-NN, approach is a simple yet efficient classification 
algorithm that has been shown to perform as well as more complicated methods, 
such as support vector machines (SVMs), when the same classification type (object 
or pixel based) and contextual features were used (Im et al., 2008). Classification 
was performed based on image object attributes. However, a considerable range 
of attributes can be extracted from image objects. In order to maintain a realistic 
processing time, a parsimonious model based on mean object value and standard 
deviation for each input layer was utilized. A spatially representative sample of 
training objects was hand selected to inform the classifier. This iterative process 
involved selecting training samples, comparing sample attributes, and refining 
training samples until a satisfactory result was achieved.

A minimum of 35 independently selected image objects per class were used 
for accuracy assessment. Validation image object selection was based on very-
high-resolution (VHR) aerial photographs over each site, reference thematic maps, 
and ground truth data collected in the study site. Validation and training sample 
image objects did not overlap. Accuracy was assessed based on the error matrix 
and associated statistics of overall accuracy, kappa statistic, producer’s accuracy 
(1−errors of omission), and user’s accuracy (1−errors of commission). Object-based 
assessment was preferred over pixel-based methods because this study was most 
interested in determining if wetland boundaries and marsh vegetation communities 
were accurately classified. With this objective, accuracy was better assessed using 
individual objects, which have clearly defined boundaries.

14.4  RESULTS

14.4.1 S egmentation Results

The unitless scale parameter is a relative value with higher numbers resulting in 
larger image objects, and lower numbers producing smaller image objects. Final 
scale values varied at each level of segmentation. The dominant land covers of 
mixed forest and water classes were most accurately delineated at a scale of 125, 
which created image objects with boundaries that were clearly defined with minimal 
absorption of smaller classes. A scale value of 40 was used at the next scale level, 
which captured whole wetland boundaries, as well as less common classes of barren 
land and herbaceous upland. Whole wetlands were further segmented at the finest 
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level at a scale of 20 to further classify these objects into marsh, swamp, spruce 
bog, or water. This parent-child relationship maintained a hierarchical constraint, 
which limited classification of the five wetland classes to only those objects defined 
in the previous step as wetlands.

14.4.2 C lassification Results

GeoeEye-1 data were classified into eight classes with an overall accuracy of 0.85–0.90 
(kappa 0.82–0.88), while individual class accuracies varied (Table 14.2). Wetlands 
comprised a small percentage of the total mapped area, with the remainder consisting 
of open water and terrestrial land cover classes such as forested, nonforested, and 
barren (nonvegetated) land. Natural and managed forests were the dominant land 
cover type. Accuracy was higher in the earlier spring series image compared to the 
late summer series image.

The water class was mapped with the highest accuracy, which is not surprising 
given the distinct spectral characteristics of this feature. The herbaceous upland and 
barren land classes achieved the lowest accuracies. Out of the three wetland types, the 
swamp class received the lowest accuracy. The full classification map for each season 
is shown in Figure 14.5. Upland classes have been merged for better visualization of 
the target wetland classes.

Considerable change in vegetation and open water extent was experienced between 
seasons (Figure 14.6). Map accuracy was higher for the spring map compared to the 
late summer map. Classes with the lowest accuracy in the spring map were herbaceous 
land and swamps, while in the late summer map the lowest accuracy was achieved by 
the barren and herbaceous land classes.

TABLE 14.2
Summary of Error Matrix Statistics for the Spring 
and Summer Classification Maps, Including All 
Eight Land Cover Classes

Spring (May)
Summer 

(September)

Land Cover Class PA UA PA UA

Marsh 0.91 0.94 0.90 0.91

Swamp 0.83 0.81 0.81 0.79

Bog 0.87 0.84 0.82 0.83

Water 0.97 0.94 0.89 0.90

Forested Upland 0.94 0.91 0.86 0.84

Herbaceous Upland 0.80 0.82 0.78 0.77

Barren Land 0.92 0.95 0.79 0.76

Overall (kappa) 0.90 (0.88) 0.85 (0.82)

PA, Producer’s Accuracy; UA, User’s Accuracy.

(c) ketabton.com: The Digital Library



298 High Spatial Resolution Remote Sensing

Upland (regenerating)
Upland (Forested)N

Marsh (emergent) Water 0 1

KilometresMarsh (wet meadow)

FIGURE 14.5  Final classification map over the Algonquin Park study region in the spring 
(left) and late summer (right). Upland classes have been merged to better visualize wetland 
classes. Upland (regenerating) class shows the extent of logging activity taking place within 
the boundaries of the park.
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FIGURE 14.6  Comparison of wetland vegetation and open water extent in two freshwater 
marshes during the spring (top row) and late summer (bottom row).
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14.5  DISCUSSION

The ability to identify a wetland from digital imagery is dependent on many factors, 
including the physical characteristics of the ground and the technical specifications 
of the sensor. In order to accurately detect wetlands, the spatially complex biotic and 
abiotic components such as open water and floating and emergent vegetation must 
be captured by the sensor. To delineate all wetlands, including those that are small 
(<2 ha) or linear in shape, the spatial resolution of the sensor must be sufficient to 
match the smallest feature on the ground. The focus of this study was to determine 
if single-source high spatial resolution imagery was sufficient to accomplish this 
task in a subset of Algonquin Provincial Park situated at the border of southern and 
central Ontario, Canada.

14.5.1 S atellite Considerations

GeoEye-1 data at 1.84 m pixel size proved satisfactory for capturing spatial 
detail representative of wetlands in the study area as well as dominant vegetation 
communities, and was used to determine wetland class to an overall accuracy of 90% 
in the spring and 85% in the late summer. Within-class variance was appropriately 
managed by applying the object-based approach to minimize spectral noise, and 
is supported by other studies evaluating wetland vegetation distribution (Dissanska 
et al., 2009; Midwood & Chow-Fraser, 2010; Rokitnicki-Wojcik et al., 2011).

Despite the greater range of spatial variation captured by GeoEye-1, high spatial 
resolution sensors are still subject to limitations of cloud cover and other atmospheric 
events. Cloud cover prevented acquisition of spring imagery during the most optimal 
time period (early May), while haze was present in a portion of the late summer 
(September) image, which may have resulted in the lower classification accuracy during 
this season. Additionally, the smaller swath width of high spatial resolution sensors 
(e.g., 15.2 km for GeoEye-1) reduces the probability of repeat coverage over a specific 
study area. Coarser spatial resolution satellites (e.g., Landsat 8 swath width of 185 km) 
that do not accept tasking orders cover larger regions of the globe continuously, and 
therefore can provide a more comprehensive archive of global imagery, albeit at the 
cost of less spatial detail. In this case study, we demonstrated the utility of ancillary 
spatial layers relevant to wetland ecosystem mapping. NDVI has a long history of use 
in vegetation mapping, while the DEM layer was incorporated to provide topographic 
information relevant to low-lying wetlands in the study area. The texture layer 
provided a measure of the spatial variation in pixel brightness values, and in wetland 
mapping has been found to limit oversegmentation and to produce image objects more 
representative of distinct vegetation communities (Mui et al., 2015).

14.5.2 C lassification Approach

The multiscale object-based approach provided an effective method of partitioning 
wetlands and other land cover classes. The segmentation of whole wetland objects into 
smaller objects for within-wetland classification allowed this process to be constrained 
to its parent class, which minimized the potential for misclassification with terrestrial 
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objects. The scale parameters reported are for the purpose of comparison of land 
cover classes at each level (coarse, moderate, fine) within the study area, and not as a 
recommendation for optimal scale values to use for other images. Many factors, such 
as study area extent, composition, segmentation algorithm used, and specifications 
of the sensor, will affect the final scale value, and a universal scale parameter does 
not currently exist.

NDVI layers were found to improve boundary detection of classes at the coarse 
level, as well as for lacustrine wetlands which transition to open water (Mui et al., 2015). 
Elevation information improved segmentation of whole wetland boundaries, likely 
because of palustrine (inland) wetlands existing in depressional landforms. Texture 
contributed most at the finest scale level by limiting the amount of oversegmentation 
in an image (or production of more objects than necessary) (Mui et al., 2015). It 
was found that resultant image objects were larger than those segmented without 
textural information, and they also more accurately captured edges between different 
macrophyte communities. Previous work has shown that texture information can 
improve classification accuracy by reducing the confusion between permanent crops 
and perennial meadows (Peña-Barragán et al., 2011). Future work should focus on the 
integration of higher-order texture measures into classification schemes, such as those 
derived from the gray-level co-occurrence matrix (Haralick et al., 1973), which has 
shown success in discriminating between deciduous and evergreen tree species (Kim 
et al., 2009). This may help improve classification accuracy between treed uplands 
and swamps (treed wetlands), which represented the wetland class with the lowest 
classification accuracy in this study.

Wetlands may provide a challenge due to their relative rarity in the landscape. It 
is generally accepted that mapping error on less frequent classes will be higher than 
error on dominant classes (Cunningham, 2006), and the relative rarity of wetlands in 
the study area compared to dominant classes such as deciduous and conifer forests 
and lakes contributed to mapping error. Wright & Gallant (2007) documented a 
similar error for palustrine wetland mapping in Yellowstone National Park, for which 
wetlands comprised less than 6% of the total cover. Despite this, the recommended 
target of 85% overall accuracy (Foody, 2002; Thomlinson et al., 1999) was achieved 
for both the spring and late summer imagery, which suggests this approach was 
appropriate for the study area and objectives.

14.5.3 S easonal Change

The higher map accuracy achieved by the spring map for all classes suggests that early 
season imagery, before vegetation has reached its peak growth, may provide better 
conditions for spectral-based mapping. Late season imagery showed a clear increase in 
vegetation extent and vigor across both aquatic and terrestrial regions, which dampen 
the below-canopy water signal. Because wetlands are characterized by soils inundated 
by water for all or part of the year, detection of the below-canopy signal is important 
for accurate delineation. Haze present in the late summer (September) image may have 
also limited classification accuracy by altering the spectral signal received by the sensor 
over the haze-covered region. Depending on the geographic location, season can have 
an obvious effect on wetland mapping, and other studies concerned with detecting 
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some aspect of change in wetlands must identify the optimal image acquisition period 
for their specific region. Munyati (2000) used dry season (September) images to map 
changes in a wetland floodplain in Zambia. The latter was chosen because at this time 
of year the wetland system stands out from the upland as the only area of dense green 
vegetation during a period of hot and dry climate. Similarly, to capture seasonal change 
in wetland inundation and vegetation in the central Amazon basin, Hess et al. (2003) 
used August–September and May–June synthetic-aperture radar (SAR) imagery to 
capture peak low and high water stages. Thus, the timing of image acquisition has 
been shown to be important for capturing the feature or process of interest and should 
be given due consideration before a final image is selected or tasked.

14.6  CONCLUSIONS

Presented in this chapter was a simple yet efficient methodology for mapping 
spatially, temporally, and spectrally complex wetlands using a single-source high 
spatial resolution optical sensor. This work demonstrates that wetland complexity can 
be captured using high spatial resolution satellite imagery, which includes wetlands of 
varying size and shape, as well as the aquatic vegetation communities found within. 
From a practical perspective, there are many areas where a previous wetland inventory 
does not exist or cannot be conducted for logistical reasons. The method of mapping 
wetlands presented here can provide starting information for better management of 
these ecosystems by delivering spatially explicit information on wetland location 
and extent. Other studies with the objective of capturing small, irregularly shaped, 
and isolated wetlands should consider the use of high spatial resolution data to meet 
these needs. Even studies concerned with larger wetlands can benefit from imagery 
with a finer pixel size to capture vegetation type and distribution of open water with 
greater accuracy and detail. With continuing advancements in sensor design and 
capability, we anticipate that high spatial resolution data will become more affordable 
and available for public use in due course, and thus researchers should continue 
to incorporate fine-resolution imagery into remote sensing studies to continue the 
advancement of our knowledge in this area.
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15.1  INTRODUCTION

Airborne LiDAR is an active remote sensing technology that has been used for a 
wide variety of applications in wetland science and management. It allows for rapid 
collection of highly detailed topographic and vegetation structural characteristics 
over large, remote areas where ground-based observations are often limited due to 
poor accessibility. Unlike other sources of high-resolution elevation data such as 
satellite stereophotogrammetry, high-frequency (e.g., 25–150 kHz) laser pulses 
can, in many circumstances, penetrate vegetation canopies, providing subcanopy 
topographic information as well. Lower quality, coarser resolution topographic data 
sources do not capture subtle topographic and morphological gradients typical of 
low-gradient wetland environments with sufficient detail for scientific research and 
management purposes. Thus, airborne LiDAR and related technologies have led to 
new opportunities for studying wetlands in ways that were previously not possible 
with coarser resolution data sources. Indeed, since approximately the early 2000s, 
numerous studies have been published on the topic, demonstrating a wide variety of 
wetland-related applications for airborne LiDAR surveys, including classification 
and mapping, geomorphological analysis, vegetation analysis, hydrologic analysis, 
flood susceptibility modeling in coastal marshes, and wetland biogeochemistry. By 
all accounts, the use of airborne LiDAR in wetland science is growing rapidly, as 
are the development and application of newer technologies that can also generate 
three-dimensional point cloud information with similar or greater levels of detail, 
including terrestrial laser scanning and modern aerial photogrammetric techniques 
such as structure from motion (SfM).

Wetlands present unique challenges associated with the analysis of LiDAR point 
clouds and DEMs, however, and require different analytical considerations compared 
to applications in other environments such as urban areas, high-relief landscapes, 
and nonvegetated terrain. For example, microtopographic surface morphology can 
give rise to local-scale (e.g., distances on the order of 0.5–10 m) elevation gradients 
that are of similar magnitude to broader, mesoscale, topographic gradients (e.g., 
10–1000 m distances) within the same wetland or wetland complex. Short wetland 
vegetation (e.g., shrub and graminoid species) can also be problematic in the point 
cloud classification step, resulting in topographic errors and inaccuracies associated 
with vegetation indices (Hopkinson et al. 2005). Finally, hydrologic derivatives and 
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digital elevation model (DEM) preprocessing techniques designed for nonwetland 
landscapes may produce unexpected or unwanted results when applied to low-
gradient environments.

Despite some of these unique challenges, novel approaches to the analysis of 
airborne LiDAR surveys have resulted in significant advances in wetland science. 
The purpose of this chapter, therefore, is to provide an overview of analytical 
methods and issues associated with the analysis of airborne LiDAR for wetland 
research and management applications. We begin with an overview of typical 
LiDAR products within the context of three major wetland-related application areas, 
including (1) wetland vegetation analysis, (2) hydrologic and geomorphic analysis of 
wetlands, and (3) wetland detection and ecosystem classification. This is followed by 
a synthesis of accuracy issues related to ground surface topography and vegetation 
analysis in wetland environments. The chapter concludes with an illustrative case 
study using airborne LiDAR and field observations of topography and surface 
hydrology from a northern peatland complex in the James/Hudson Bay Lowlands, 
northern Ontario, Canada.

15.2 � LiDAR DATA PRODUCTS, DERIVATIVES, AND THEIR 
APPLICATIONS IN WETLAND SCIENCE AND MANAGEMENT

15.2.1 D iscrete Return Airborne LiDAR in Vegetated Environments

The vast majority of wetland studies involving airborne LiDAR data analysis have 
made use of discrete return surveys rather than full waveform surveys. A discrete 
return LiDAR sensor emits a pulse of laser energy (light), and the time required 
for the pulse to return to the system from the target is recorded (Lim et al. 2003). 
Through data processing, one to four discrete returns per pulse can be extracted, 
and for each pulse, X, Y, and Z values and intensity values (that correspond to a 
laser pulse’s backscattered amplitude) can also be recorded. Since the speed of light 
is known, using the time for the pulse to travel from the sensor to the ground and 
back, the distance between the sensor and the target can be determined. Using an 
integrated differential global positioning system (GPS), scanning mirrors, and an 
inertial measurement unit (IMU), the precise location of each elevation point in a 
LiDAR swath can be determined (Wehr and Lohr 1999). Airborne LiDAR data are 
collected in flight lines (with overlap) that are merged together to make one point 
cloud, which, depending on the size of the area scanned and the density of points, 
could be hundreds of thousands or millions of points. As the laser pulse is emitted 
from the sensor, it diverges (Figure 15.1), resulting in a footprint on the ground, the 
size of which is dependent on wavelength and flying height (Hopkinson 2007). This 
means that as the beam travels through a vegetated canopy, it may encounter several 
objects that vary in height (i.e., elevation). It will first be reflected from the top of 
the canopy, sending a return back to the sensor. It will then be reflected from the 
intermediate canopy objects (e.g., branches, leaves), and should finally be reflected 
from the ground (Figure 15.1).

Most discrete return LiDAR systems used today are able to detect up to at least 
four returns (e.g., Optech ALTM 3100 or PEGASUS HA500). These returns are then 
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classified as points that represent the surface of the earth (ground points) and those 
that represent other features such as vegetation (nonground, vegetation, buildings) 
(Wehr and Lohr 1999). Once the data have been classified, the points are interpolated 
to create various rasterized topographic, hydrologic, and vegetation derivatives as 
described in Sections 15.2.1.3 and 15.2.1.4.

A summary is provided in Table 15.1 showing typical LiDAR data products and 
derivatives that are used in wetland research applications. Many of the examples 
are not exclusive to wetland applications. We have grouped them into four broad 
categories, as described in the following subsections.

15.2.1.1  Original Data and Classified Point Clouds
LiDAR survey providers will commonly deliver classified point clouds and gridded 
products interpolated from ground- and/or vegetation-classified returns and laser 
return intensity. Methods for point cloud classifications are often proprietary, 
although it has become easier for researchers to implement classifications of raw 
point clouds using various software tools such as LAStools (https://rapidlasso.
com/lastools/) and CloudCompare (http://www.danielgm.net/cc/). Typically, point 
clouds are interpolated or otherwise analyzed to produce gridded products that may 
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FIGURE 15.1  (a) Not all of the energy emitted from the pulse is reflected by a single object. 
Due to the divergence of the beam, the footprint of the pulse when it reaches the surface is 
larger than the pulse at the sensor. In this case, all objects within the 30 cm footprint reflect 
different amounts of transmitted pulse energy. The reflected energy is returned to the sensor 
by multiple objects within the footprint. (b) The wave is returned with varying amplitudes 
(reflected energy). By setting the pulse threshold, peak return amplitudes are output as point 
locations 1st, 2nd, 3rd, and Last. The Last return can be interpreted to be from the ground. 
[From Hopkinson, C. et al. 2005. Canadian Journal of Remote Sensing 31 (2):191–206; 
Millard, K. et al. 2009. Geoarchaeology 24 (5):576–588.]

(c) ketabton.com: The Digital Library
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represent ground or aboveground elevations or laser return intensity (interpolated 
products), or other statistical properties and compound derivatives for hydrologic 
and geomorphic analysis (topographic, geomorphometric, and hydrologic derivatives) 
and vegetation characterization (vegetation derivatives). In a few cases, researchers 
analyze the classified ground or canopy returns directly, rather than interpolating 
to an arbitrary grid size, which has the advantage of using the entire distribution of 
available points (e.g., Richardson et al. 2010).

15.2.1.2  Interpolated Products
The resolution of gridded products is often dependent on the particular application, as 
well as the original point cloud density. The latter is a function of surveying parameters, 
such as flight altitude and laser pulse frequency, and surface characteristics, including 
vegetation density. DEMs and digital surface models (DSMs) are interpolated from 
classified bare earth and all return point clouds, respectively. Typical LiDAR-derived 
DEM and DSM resolutions range from 0.5–5 m. The choice of resolution typically 
depends on point density of the LiDAR survey, but also on computational limitations. 
Laser return intensity (i) is sometimes interpolated to a gridded product and used 
to infer ground or vegetation surface properties. The analysis of DEMs, DSMs, 
and interpolated intensity data for wetland applications is common. However, other 
derivatives extracted from point clouds and/or DEMs and DSMs are more frequently 
used because they convey additional, important biophysical or hydrologic information 
about wetland types and characteristics.

15.2.1.3  Topographic, Geomorphometric, and Hydrologic Derivatives
These derivatives are typically produced through a moving-window (neighborhood) 
analysis of the interpolated bare earth DEM. The information content of these 
derivatives can vary substantially as a function of the input DEM resolution, and low-
pass smoothing filters are typically applied to limit the effect of surface roughness 
and noise, particularly at higher (e.g., <1 m) pixel resolution (Richardson et al. 2009; 
MacMillan et al. 2003). For example, slope and aspect are commonly calculated 
from LiDAR DEMs and can provide information on local topographic gradient and 
solar insolation, although their utility in low-relief wetland environments is limited 
and generally not applicable due to the lack of larger scale relief that is required to 
make these localized metrics useful. Hydrologic derivatives typically involve use of 
topographically driven flow routing algorithms to predict water movement of flow 
concentration through landscapes and have been applied in wetland environments, 
along with drainage and connectivity metrics (see Section 15.2.2.1). Hydrologic 
derivatives are sensitive to DEM resolution, hydrologic preprocessing techniques, 
and algorithmic choices, as demonstrated in the case study.

15.2.1.4  Vegetation Derivatives
Vegetation derivatives are normally derived through analysis of either the all returns 
point cloud or the aboveground returns point clouds. Early adopters (e.g., Genc et al. 
2005) of LiDAR data in vegetation research often simply considered the first return 
(i.e., the return with the shortest round-trip travel time) as the top of the canopy, 
and the last return (i.e., the return with the longest round-trip travel time) to be the 

(c) ketabton.com: The Digital Library
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ground. In several circumstances, this method works well (e.g., bare ground or sparse 
or open canopy), but in areas with dense understory vegetation it has been shown 
that lack of penetration into the understory can cause significant error in capturing 
the true ground surface (Hopkinson et  al. 2005). More sophisticated algorithms 
to separate ground from vegetation points have been created, including multiscale 
curvature classification (MCC) (Evans and Hudak 2007), and the Boise Centre for 
Aerospace Laboratory LiDAR algorithm (BCAL) (Streutker and Glenn 2006). These 
algorithms have been found to produce similar overall accuracy results, although 
BCAL performed better in areas of dense vegetation whereas MCC performed better 
where steep changes to topography were present (Tinkham et al. 2011). Other, simpler 
vegetation derivatives include gridded products that represent a statistical property of 
the point cloud (minimum, maximum, and standard deviation of return elevations), 
or ratios (e.g., ratio of ground return count to all-return count) within the areal unit 
defined by each pixel (Table 15.1).

15.2.2  Applications

15.2.2.1  Wetland Ecosystem Classification and Detection
Wetlands are characteristically low-gradient environments with distinct vegetation 
communities and hydrologic settings. Despite having very low relief, topographic 
structure is also a defining characteristic of different types of wetlands. For example, 
ombrotrophic peatlands develop characteristic surface morphologies that reflect the 
local topographic and hydrologic setting and the long-term process of ecological 
succession (Damman 1986). Vegetation communities similarly reflect hydrologic 
and nutrient conditions in wetlands and most classification systems use vegetation 
as a key discriminator of wetland type. High-resolution, LiDAR-derived topographic 
and vegetation information can therefore provide important information on wetland 
occurrence and type, and is now frequently used on its own or in conjunction with 
other imagery sources to classify and map wetlands over large areas. In this section, 
we have synthesized literature pertaining to wetland ecosystem classification (i.e., 
distinguishing different types of wetlands and/or their characteristics within a 
wetland complex or landscape), and wetland detection (i.e., binary landscape 
classifications showing distribution of wetlands). A tabulated summary is also 
provided (Table 15.2).

Numerous authors have demonstrated that LiDAR topographic and vegetation 
derivatives can be incorporated into image classification procedures to improve 
the thematic classification accuracy of wetland maps compared to the use of aerial 
photographs and satellite-based optical or radar imagery alone. In one of the 
earliest examples of this, Maxa and Bolstad (2009) combined elevation, slope, and 
terrain shape (curvature) grids derived from a 1 m resolution LiDAR DEM with 
1 m resolution pan-sharpened IKONOS red/green/blue (RGB) imagery in a manual 
classification effort and reported better distinction of upland versus wetland classes 
in a forested landscape compared to the interpretations based on higher resolution 
aerial photographs. Thematic classification accuracies for maps created through 
automated, supervised, and unsupervised classifiers can also be improved through the 
incorporation of LiDAR topographic, hydrologic, and vegetation derivatives. LiDAR 
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derivatives provide important contextual information about topographic position and 
hydrologic setting that improve statistical separability of classes, something that is 
particularly important for pixel-based image classifiers. For example, Difebo et al. 
(2015) created an ecosystem map with eight thematic classes for a northern peatland 
complex using supervised maximum likelihood classification with LiDAR and 4 m 
resolution IKONOS imagery. LiDAR information was incorporated by calculating an 
index of relative topographic position, difference from mean elevation (DME), of each 
focal pixel at multiple window sizes ranging from 15 × 15 to 300 × 300 pixels. The 
largest window size was found to improve the independently validated classification 
accuracy by approximately 10% compared to the use of IKONOS imagery alone. 
The characteristic dome morphologies of raised bogs in this landscape were clearly 
captured within the LiDAR DEM, and this information could be exploited by the 
image classifier to improve class separability, provided an appropriate scale was used 
to calculate the derivative.

Millard and Richardson (2013) combined a wide range of derivatives from both 
LiDAR and RADARSAT-2 synthetic-aperture radar (SAR) imagery to produce an 
ecosystem classification for Mer Bleue Bog in southeastern Ontario, Canada, using 
a random forest (RF) classifier. Only the LiDAR derivatives (including vegetation, 
hydrologic, and topographic) were found to contribute meaningful information to 
the mapped classes, as interpreted from the RF variable importance metrics. In a 
subsequent study, the same researchers were able to map a nearby peatland complex, 
Alfred Bog, into five thematic classes with an overall, independently validated 
classification accuracy of 73%, using only nine LiDAR derivatives, after removing 
redundant input variables (Millard and Richardson 2015). RF classification was also 
used in that study, and the variable importance measures indicated the top three 
most important LiDAR derivatives to be valley depth (a topographic derivative) and 
two vegetation derivatives including standard deviation of vegetation height and 
maximum vegetation height.

Chust et  al. (2008) combined various LiDAR derivatives, including basic 
topographic metrics and laser return intensity, with four-band multispectral [RGB 
near-infrared (NIR)] aerial photography for classification of estuarine, coastal 
habitats. LiDAR intensity data required a smoothing filter to reduce speckle, but were 
found to improve supervised classification of wetland habitats by ∼8% compared 
to use of RGB-NIR imagery alone. In a similar coastal mapping study, Gilmore 
et al. (2008) successfully exploited differences in vegetation community structure by 
incorporating LiDAR-derived canopy heights into an object-oriented classification 
routine. For thematic mapping of an herbaceous, valley-bottom wetland into nine 
classes using a multisensor approach, Rapinel et  al. (2015) achieved the highest 
accuracies (85.5%) only after inclusion of LiDAR-derived elevation, vegetation height, 
and laser return intensity. Thus, there is ample support in the literature for using 
airborne LiDAR derivatives to improve wetland mapping products. Moreover, when 
LiDAR topographic and vegetation derivatives are used as input into image classifiers, 
their distributions can be visualized within each mapped class and potentially used 
as ecological indicators of wetland function since they reflect spatial variations in 
geomorphic and biophysical characteristics and their underlying ecohydrological 
drivers (Millard and Richardson 2013).
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Numerous studies have also used LiDAR DEMs for detection and mapping of 
small wetlands in forested landscapes. The analytical approaches used tend to differ 
from the ecosystem classification approaches described previously. Specifically, 
these approaches typically involve deriving contextual hydrologic information 
related to topographic setting, local drainage, and wetness conditions. An early 
example is by Creed et  al. (2003), who mapped small subcanopy or cryptic 
wetlands in a boreal shield landscape in Ontario, Canada, using a depression 
detection algorithm. A related method based on a stochastic approach to depression 
filling (Lindsay and Creed 2006) has been subsequently applied for detection of 
small wetland features and vernal pools in forested and glaciated landscapes of 
North America (Creed et al. 2008; Wu et al. 2014). In a similar landscape setting, 
Richardson et al. (2009) calculated the downslope drainage index (Hjerdt et al. 
2004) on a 1 m resolution LiDAR DEM and applied an edge detection algorithm 
to segment the landscape according to drainage conditions. The segments were 
thresholded with a decision tree model using field-based observations as training 
data to map small forested wetlands and vernal pools. Hogg and Holland (2008) 
used an estimate of groundwater loading potential derived from a DEM and 
surficial geology information (Baker et al. 2003), combined with elevation and 
profile curvature information. These derivatives were calculated using a coarser 
resolution DEM, followed by a LIDAR-derived DEM, and the latter improved 
accuracy of a decision tree classifier from 76% to 84%.

The topographic wetness index (TWI) (Beven and Kirkby 1979) is commonly used 
for mapping saturated areas and wetlands. TWI is a compound hydrologic derivative 
derived from the ratio of upslope contributing area (α) to local slope (β). There are 
many different methods for calculating TWI, and most variants differ on the basis 
of how α is calculated, with some allowing for more distributed flow than others 
(Rampi et al. 2014). With high-resolution DEMs (e.g., < 5 m), this variable can be 
particularly important since nondistributed algorithms can produce artificially linear 
flow concentrations through low-relief landscapes. Several studies have shown that 
when computing TWI from LiDAR-derived DEMs for mapping forested wetlands, 
methods that produce more distributed flow (e.g., multiple flow direction versus single 
flow direction algorithms) are preferable (Rampi et al. 2014; Lang et al. 2013). The 
case study in Section 15.4 of this chapter also presents a similar analysis for the 
purpose of upscaling point measurements of near-surface soil moisture in a northern 
peatland complex.

15.2.2.2  Hydrologic and Geomorphic Analysis of Wetlands
In addition to their utility for wetland detection and classification, LiDAR terrain 
derivatives can also be used to infer hydrological, ecological, and biogeochemical 
processes occurring within wetlands with remote sensing. Topographic structure 
imparts a strong control on hydrologic flow paths and spatial patterns of inundation 
in wetlands, nutrient availability, and vegetation communities. Moreover, structural 
characteristics of wetlands, including topographic gradients, evolve over time 
through ecohydrological feedback mechanisms, most notably in peatlands (Bridgham 
et al. 1996). LiDAR imagery and derivatives can be used in this process, allowing 
researchers to link high-resolution spatial patterns to underlying ecological processes, 
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thus improving understanding of wetland hydrological and biogeochemical functions. 
In this section, we discuss examples of this from the scientific literature.

In forested and ombrotrophic peatlands, LiDAR topography data have been 
successfully used to quantify geomorphic form, including the marginal lagg zone 
that serves as an ecologically important transitional ecotone between upland 
peatland ecosystems. The lagg area is typically nutrient enriched and wetter than 
the central areas of the peatland due to localized inputs from the surrounding 
upland area. These abiotic factors result in distinct differences in vegetation with 
the lagg zone. Richardson et  al. (2010) found that LiDAR ground returns could 
be analyzed to quantify the average lagg width of northern forested peatlands in 
northern Minnesota and southcentral Ontario, Canada. They found LiDAR-derived 
lagg widths to increase as a function of the ratio of upslope contributing area to 
hydraulic gradient (as estimated from LiDAR). Moreover, they found that porewater 
chemistry corresponded spatially with the LiDAR-defined lagg zone, including higher 
concentrations of sulfate, dissolved organic carbon, and mercury. Langlois et al. (2015) 
analyzed the topographic structure of six different ombrotrophic peatlands in eastern 
Canada and classified lagg features as either confined or unconfined transitional 
areas. Confined laggs were topographically depressed relative to the adjacent upland 
slope and bog areas, whereas unconfined laggs were adjacent to flatter or receding 
(sloping away from the lagg) upland areas. Water levels and nutrient conditions were 
distinctly different between these two types of lagg areas due to the abiotic control 
of topography, with corresponding influences on vegetation. More recently, Langlois 
et al. (2017) used a moving split-window analysis of LiDAR-based topographic and 
vegetation derivatives to detect ecological gradients and boundaries occurring with 
confined and unconfined laggs of these same study sites. The study showed that 
ecological gradients and boundaries were reflected in the LiDAR derivatives, but 
boundary detection varied as a function of scale, namely, the size of the moving 
split-window applied.

LiDAR topography has been used for hydrologic analyses and simulation in a 
wide variety of wetland environments including tidal salt marshes, deltaic wetlands, 
northern peatlands, forested wetlands, and prairie wetlands. Due to the exceptionally 
low relief conditions of such environments, these types of analyses were generally not 
possible prior to the availability of airborne LiDAR. One of the earliest examples was 
by Töyrä et al. (2003), who assessed the accuracy of LiDAR DEMs for hydrologic 
applications in the 3900 km2 Peace–Athabasca Delta in northwestern Canada. 
Despite elevation biases and random errors associated with different vegetation 
classes, they concluded that LiDAR ground surface topography could be useful for 
many hydrologic applications in this low-gradient environment.

Various studies demonstrate use of LiDAR DEMs to improve understanding of 
hydrologic processes and functions of wetlands such as flooding, water storage, flow 
path connectivity, and runoff generation. In coastal salt marshes, airborne LiDAR has 
helped researchers map and model tidal inundation zones and associated vegetation 
communities (Morris et al. 2005). Knowledge gained from such analyses can be used 
to guide restoration efforts in disturbed coastal marshes (Millard et al. 2013) or to 
predict ecosystem impacts of sea level rise due to climate warming (Moeslund et al. 
2011). Lane and D’Amico (2010) demonstrated potential to estimate storage volumes 
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in isolated wetlands of Florida for quantifying and modeling hydrologic ecosystem 
services at a landscape scale. LiDAR DEMs have been used to estimate water storage 
capacity of depressional wetlands in Prairie Pothole regions of North America and 
to improve parameterization and output of hydrologic simulation models (Huang 
et al. 2013, 2011; Wu and Lane 2016). Richardson et al. (2012) used quantitative 
analysis of LiDAR to characterize the near-stream zone of different size streams in a 
northern peatland complex in the James/Hudson Bay Lowlands in Ontario, Canada, 
and identified a scale effect that helped interpret differences in runoff-generating 
potential during high flow periods as a function of watershed size. In this low-
gradient, peatland-dominated landscape, approaches for characterizing the dynamic 
storage capacity of natural ponds and depressions, as described by Wu and Lane 
(2016), hold potential for improving the representation of the dynamic hydrologic 
connectivity of discrete landscape units and their effects on watershed-scale runoff 
response (Quinton and Roulet 1998). Moreover, there is a need to test effectiveness of 
different topographic flow routing algorithms in large-wetland complexes, including 
their sensitivities to DEM preprocessing, DEM resolution, and algorithm types since 
most work of this nature has focused on wetland detection in landscapes with larger 
scale relief (e.g., Lang et al. 2013, 2012; Wu et al. 2014).

15.2.2.3  Wetland Vegetation Analysis
Vegetation type, height, biomass, and structure often covary with many other 
ecological and/or hydrological gradients in wetland environments. Also, many 
biophysical and climate models (e.g., energy flux) have been shown to be sensitive 
to errors in vegetation parameterizations and require accurate measurements of 
vegetation height (Hopkinson et al. 2005). In particular, wetlands have not been 
well represented in these models, often with data being extrapolated from a few 
point-scale measurements across large areas. Therefore, there is great interest in 
spatially measuring wetland vegetation characteristics, and many authors have 
demonstrated opportunities and challenges associated with the use of LiDAR for 
such purposes.

The ability of LiDAR to provide measurements for the derivation of vegetation 
structural information, including height, canopy closure, and vertical foliage 
distribution, has been assessed in a variety of environments including various 
wetland environments. The first successful measurement of vegetation height in a 
wetland environment using LiDAR showed a statistical separation between heights 
of wetland classes as measured through a profile (nonscanning) LiDAR (Jensen 
et al. 1987). LiDAR technology has advanced significantly from its early states, 
and now scanning LiDAR can be used to measure these parameters with near-
survey-grade levels of precision (better than 0.01 m) and accuracy (better than 5 cm). 
Outside of wetland environments and especially in the forestry sector, LiDAR is 
now regularly used for measuring forest and tree heights, and these measurements 
are highly correlated with field observations of height, diameter at breast height, 
and canopy characteristics (White et al. 2016). In wetland environments, there are 
fewer published results. Most analyses have focused on relating field measurements 
to raw LiDAR points (Millard et al. 2008) or LiDAR derivatives such as canopy 
height models or canopy cover (Lefsky et al. 2002). Since originally reported by 
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Bradbury et al. (2005), many authors have found relationships between the standard 
deviation of the LiDAR all-hits data set with field measurements of vegetation 
height, including in wetlands. When the standard deviation of LiDAR return 
elevations is high, there is likely taller vegetation due to the variability in multiple 
returns reflected from the ground, top, and within the canopy. Hopkinson et al. 
(2005) discussed the limitations of using a multiplier of the standard deviation of 
the LiDAR pulse returns to estimate canopy height where standard deviation is low. 
Due to inherent noise in the LiDAR data, the standard deviation will always be 
positive (nonzero), and therefore height values will also be positive, even where there 
is no vegetation. Additionally, the standard deviation of pulses will increase with 
slope regardless of vegetation presence. However, they noted that adjustments can 
be made if these vegetation-specific relationships are understood. Hopkinson et al. 
(2005) also produced frequency distributions of the first and last pulse in each of the 
vegetation classes, which can be used to assess the differences in vertical distribution 
of pulses within the canopy. Chadwick (2011) compared field measurements to 
LiDAR-derived canopy height model (CHM) in different mangrove classes and 
found that LiDAR systematically underestimates canopy height by up to 2 m for 
the tallest trees. Similar to Hopkinson et al. (2005), they attributed this to LiDAR 
pulses missing the tree apexes, as well as an overestimation of ground height due to 
lack of full pulse penetration.

There are still many limiting factors and uncertainties related to LiDAR system 
settings and methods used to measure vegetation parameters (Hopkinson et al. 2005), 
and this information is not often published in studies and sometimes not provided by 
the data provider. In addition to limited penetration into dense vegetation, wetland 
environments present a unique challenge in the measurement of vegetation parameters 
with LiDAR: the wetness of the environment may influence the sensor’s ability to 
measure pulses (Hopkinson et al. 2005). Infrared energy is absorbed by water, and 
therefore, in wet areas, weak laser backscatter from the saturated ground conditions 
often occurs. While these areas can be sometimes identified using the intensity of 
the return (Zhang 2008), laser backscatter returned from a wet ground surface will 
not be strong, and therefore laser returns will be biased to the foliage because they 
have a higher intensity of reflection (Hopkinson et al. 2005). LiDAR has been used to 
obtain regional estimates of aboveground biomass, with a variety of different LiDAR 
derivatives used to derive statistical correlations with field measurements. Ballhorn 
et al. (2012) estimated aboveground biomass in tropical peat swamp forests from 
LiDAR using comparison of height histograms with field plots.

15.3 � ACCURACY OF LiDAR GROUND SURFACE TOPOGRAPHY 
AND VEGETATION INDICES IN WETLAND ENVIRONMENTS

Although airborne LiDAR surveys can produce dense three-dimensional point 
clouds of ground surface elevations and vegetation, it is important to appreciate 
the inherent positional (x, y) and elevation (z) inaccuracies, and how these errors 
are influenced by surface properties, such as surface roughness and vegetation 
conditions. This is particularly relevant for wetland applications because LiDAR 
elevation errors can represent high relative percent error given the very low relief 
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that is typical of wetland landscapes. This section provides a synthesis of knowledge 
related to accuracy issues in wetlands with respect to both ground elevation and 
vegetation information.

15.3.1 L iDAR Ground Surface Elevation Error in Wetland Environments

Various studies have been published on the topic of LiDAR-derived ground surface 
elevation accuracies in wetland environments (Table 15.1). Most studies report 
elevation errors as the standard deviation of the difference between LiDAR-derived 
versus field surveyed elevations, or the root-mean-squared error (RMSE) of predicted 
(LiDAR-derived) versus observed (surveyed) elevations.

Field surveyed elevations are typically collected using electronic theodolites or 
differential GPS [e.g., real-time kinematic (RTK) GPS] systems with millimeter- 
to centimeter-level horizontal and vertical precisions. Errors associated with these 
field survey instruments are normally considered negligible compared to the errors 
associated with the LiDAR system, provided the manual surveying was conducted 
correctly. Under ideal conditions (e.g., nonvegetated, hard ground surface such 
as roads or bedrock outcrops), a typical RMSE of discrete LiDAR ground return 
elevations is around 0.08 m. A large source of this error is the result of x, y positional 
inaccuracies, which are typically on the order of 0.5 m under ideal conditions (Wehr 
and Lohr 1999). These (x, y, z) positional errors propagate from errors in three-
dimensional positioning of the LiDAR sensor on the aircraft.

LiDAR accuracy assessments are commonly conducted by comparing a survey 
point elevation to the elevation of a LiDAR ground return within some maximum 
separation distance (∼0.5 m) to account for positional errors. Others are conducted 
on the basis of point-to-pixel or pixel-pixel comparisons, whereby pixel values 
represent interpolated elevations from two or more point measurements (either 
LiDAR points, survey points, or both). Areal interpolation improves accuracy of 
LiDAR elevations provided they are compared to manual survey measurements that 
have been interpolated at a similar scale (Richardson et al. 2012). This improvement 
in accuracy results from the averaging process, which results in smoothing of random 
error and natural variations in elevation surfaces, thus facilitating detection of subtle 
elevation gradients in wetland environments (Richardson et al. 2010). In Table 15.1, 
only point-to-point comparisons are shown for consistency. In those studies that 
reported both point-to-point and pixel-to-pixel comparisons, errors were lower for 
the interpolated (pixel-to-pixel) scenarios. From Table 15.1, the average standard 
deviation and RMSE of LiDAR ground surface elevations for studies reporting point-
to-point comparisons is 0.13 m (0.09–0.22 m) and 0.16 m (0.07–0.37 m), respectively. 
In wetland environments, these errors are generally caused by (1) large local-scale 
spatial variability in ground surface elevations, and (2) vegetation conditions. 
Another potential source of ground surface elevation error results from ambiguities 
in identifying the true ground surface due to the presence of compressible surface 
material such as moss, peat, or floating vegetation mats. This latter source of error 
in not discussed further here but should be considered when designing topographic 
surveying protocols for validation of LiDAR-derived elevation products. For example, 
some researchers report using base plates with approximately 10 cm diameter to 
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present the surveying range pole from sinking too far into the ground surface (Schmid 
et al. 2011; Richardson et al. 2010).

Large local-scale variability in surface elevations on the order of ∼10−2 m to 10−1 m 
are typical in many noninundated wetlands such as peatlands due to the presence of 
microforms that result from ecohydrological feedbacks affecting vegetation growth 
and peat accumulation (Belyea and Baird 2006; Richardson et al. 2010). This surface 
roughness results in elevation errors due to the aforementioned errors in the x and 
y positioning of ground points since it is impossible to precisely colocate a discrete 
ground-return measurement with a survey point measurement. The error associated 
with this source of error should be proportional to the scale of surface roughness 
within a radius of each survey point that is dictated by the (x, y) position of the LiDAR 
system, described previously.

Elevation errors are strongly influenced by vegetation conditions in wetlands 
and tend to increase as a function of vegetation height and density. Vegetation may 
cause systematic error (bias) or random error (as indicated by RMSE or standard 
deviation). Ground surface elevation errors can also increase as a result of short, 
dense vegetation, which may either limit the number of bare earth returns due to poor 
laser penetration or cause difficulties in separating ground versus vegetation returns 
during point cloud classification. Elevation bias due to vegetation is normally positive, 
and often increases with vegetation height within a given study. Hopkinson et al. 
(2005) reported positive elevation biases in a boreal wetland complex on the order of 
0.06 m–0.15 m, and random error ranging from 0.03 m to 0.22 m standard deviations. 
The highest bias and random error observations (0.15 m and 0.22 m, respectively) 
were for aquatic vegetation and this was attributed to the effect of standing water 
below the vegetation. Schmid et al. (2011) showed significant, positive correlation 
between the top of canopy height and the vertical error in LiDAR ground surface 
elevations in a coastal marsh environment, and error was exacerbated by vegetation 
density. They used a height-dependent correction factor to improve accuracy of 
LiDAR ground elevations for their study site.

15.3.2  Accuracy of LiDAR-Derived Vegetation Parameters

LiDAR is now commonly used to extract vegetation properties such as height, 
canopy cover, and biomass. Most available research has focused on forestry 
applications, with fewer examples of wetland-related applications. While this is 
likely due to the aforementioned issues with error in returns and/or issues with point 
cloud classification in short dense vegetation, several examples of measurement of 
vegetation height and vegetation biomass have been reported in a variety of different 
wetland classes. Hopkinson et al. (2005) reported a −0.24 m mean difference in 
aquatic canopy height (derived from the nearest canopy point) as compared with 
field measurements. Additionally, they found no relationship between canopy 
height derived from rasterized canopy data with field measurements in aquatic 
vegetation. Conversely, for a tropical wetland environment, Genc et al. (2005) 
used the difference between the canopy height surface and the DEM surface to 
produce a vegetation height raster and found a strong relationship between the two 
(R2 = 0.92, n = 16).
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In the case of extracting biophysical information in areas with short, dense wetland 
vegetation, one commonly used method has been to derive a relationship between the 
standard deviation of the all returns point cloud heights and field measurements. The 
standard deviation of vegetation heights is useful when considering the distribution 
of LiDAR vegetation data. LiDAR ground points and upper canopy points fall at the 
extremes of the distribution. Therefore, short vegetation should have a small standard 
deviation in height, whereas taller vegetation will have a larger standard deviation. 
In a salt marsh environment, Millard et al. (2008) improved models of vegetation 
height from LiDAR using this method by an order of magnitude (the relationship 
improved from an underestimation of 0.4–0.036 m). Hopkinson et al. (2005) found 
similar results in an aquatic marsh environment. More recently, Luo et al. (2015) 
used the same method to measure vegetation height and found a strong relationship 
(cross-validated R2 = 0.84 and an RMSE of 0.14 m). Similar to Hopkinson et al. 
(2005), they reported that the relationship between a rasterized canopy height model 
and vegetation height was poor in short wetland vegetation. Luo et al. (2015) also 
investigated the ability to derive the leaf area index (LAI) from LiDAR and found 
that using predicted vegetation height resulted in a stronger relationship (R2 = 0.79) 
than using a laser penetration index (R2 = 0.70).

In boreal and tropical peatlands, several results have been reported on attempts 
to use LiDAR to estimate aboveground biomass. Lefsky et  al. (2002) assessed 
the relationships between several different LiDAR vegetation derivatives and 
aboveground biomass in boreal forest, including muskeg and peatland areas. Canopy 
cover multiplied by mean canopy profile height resulted in the strongest relationship 
(R2 = 0.88), but several other derivatives also resulted in similar relationships (e.g., 
canopy cover R2 = 0.84). Englhart et al. (2013) and Boehm et al. (2013) both found 
strong relationships between LiDAR point clouds and aboveground biomass in 
tropical peatlands, but both Kronseder et al. (2012) and Riegel et al. (2013) found 
poor results using LiDAR point clouds alone (R2 = 0.41 and 0.18, respectively). Riegel 
et al. (2013) improved the relationship by adding optical data into their regression, 
but relationships were generally still poor (R2 = 0.37). In mangroves, LiDAR has 
been used to assess a variety of vegetation and canopy characteristics with high 
accuracy. For example, Wannasiri et al. (2013) were able to estimate crown diameter 
(R2 = 0.75) and estimate individual tree heights (R2 = 0.80). Zhang (2008) was able 
to detect small gaps in mangrove canopy due to lightning strikes with an average 
size of 0.59 m2.

15.4 � CASE STUDY: LiDAR ACCURACY ASSESSMENT AND 
DIGITAL TERRAIN ANALYSIS IN A NORTHERN PEATLAND 
COMPLEX, JAMES BAY LOWLANDS, ONTARIO, CANADA

15.4.1 I ntroduction, Study Site, and Objectives

This case study focuses on analysis of surface topography and hydrologic conditions 
in a large peatland complex in northern Ontario, Canada, using discrete return 
airborne LiDAR. The case study highlights some of the common issues associated 
with LiDAR applications in wetlands discussed in Sections 15.1 to 15.3, focusing 
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on LiDAR-derived ground elevation resolution and accuracy and the application of 
high-resolution (≤ 5 m pixel dimensions) topographic wetness indices in low-gradient 
peatland environments.

The study site is located in the vicinity of the De Beers Victor Diamond 
Mine approximately 500 km northeast of Timmins, Ontario and 90 km west of 
Attawapiskat, Ontario, in the James Bay Lowland ecoregion of the Hudson Bay 
Lowlands ecozone (52.83° N, 83.93° W). The James/Hudson Bay Lowlands falls 
within a zone of sporadic discontinuous permafrost and represents the world’s 
largest contiguous expanse of peatlands (Riley 2011). The construction of the De 
Beers Victor Diamond Mine, which initiated in 2006, facilitated access to this 
remote landscape for peatland scientists and other researchers. Regional soils consist 
of thick deposits of marine clay and clay till that are overlain by peat deposits, 
averaging approximately 2 m in thickness, and situated upon a locally karstic 
Silurian limestone aquifer known as the Attawapiskat Formation. The groundwater 
table is near or above the surface in most areas and is associated with development 
of a patterned peatland complex with an array of bogs and fens. Minerotrophic fens 
(e.g., ribbed, riparian, ladder) are topographically low lying, and typically portray 
directional seepage and/or convey water (Mitsch and Gosselink 2008; Quinton et al. 
2003). Ombrotrophic bogs (domed, mound, flat) are marginally raised in elevation 
above the fens, and thus receive precipitation as their sole source of water and act 
as important water storage and release features (Sjörs 1959). The development of 
raised bogs in this region was initiated by the creation of interfluvial divides between 
drainage channels, and interfluve width imposes a constraint on bog growth and 
maximum height of domes above channel base heights (Glaser et al. 2004). Drainage 
networks in headwater systems are predominantly channel fens or fen water tracks. 
Fen water tracks run down the sloping sides of bogs at approximately right angles 
to the bog edges (Sjörs 1959). Channels along these drainages are intermittent to 
nonexistent, but during periods of high flow or during the freshet when ground ice is 
prevalent, overland flow can be observed between small, flowing pools (Richardson 
et al. 2012).

A discrete return airborne LiDAR survey was conducted over the Victor Diamond 
Mine site and surrounding area to provide baseline information on topographic 
conditions prior to dewatering of the regional aquifer system surrounding the 
mine pit. Several published articles have subsequently made use of this data set 
for peatland ecosystem classification (Difebo et al. 2015; Franklin and Ahmed 
2017) and hydrologic analysis (Richardson et al. 2012). Here, we present some 
additional analyses of these data to demonstrate vertical resolution and accuracy 
of LiDAR-derived ground surface elevations in this northern peatland complex, 
and to evaluate the extent to which spatial patterns of surface drainage and wetness 
can be modeled using a LiDAR DEM. The specific objectives of these analyses 
were (1) to quantify the vertical accuracy of LiDAR-derived surface elevations 
relative to field surveyed elevations derived with an RTK differential GPS system 
along a transect that is representative of different peatland types in this region; 
(2) to demonstrate capabilities for LiDAR-based analysis of peatland landforms 
using topographic profiles; and (3) to test topographic flow-routing and wetness 
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index algorithms for their ability to predict spatial variations in peatland surface 
moisture, including the effects of hydrologic preprocessing methods and DEM 
resolution.

15.4.2  Methods

15.4.2.1  LiDAR Acquisition
A discrete return airborne LiDAR survey was conducted in July 2007 by Terrapoint 
Canada Inc. over a 462 km2 area encompassing the 37 km2 watershed shown in Figure 
15.2. The study area was reduced to this watershed area to reduce computational 
demands for all subsequent steps. Laser pulse returns were classified into bare earth 
and vegetation classes by Terrapoint and delivered as tiled, xyzi ASCII files. The 
nominal density of bare earth returns was 0.5 points per square meter of ground 
surface. DEMs were interpolated at three different resolutions (1, 2.5, and 5 m) from 
the classified bare earth returns, using an inverse distance weighted interpolated 
with a low weighting exponent (0.5) and a maximum of four neighboring points. 
These DEMs were used for the calculation of hydrologic derivatives as described 
in Section 15.4.2.5.

15.4.2.2  Topographic Surveying and Accuracy Assessment
Approximately 350 ground survey elevation points were collected along a 1.6 km 
research transect (Figure 15.2) using a Topcon HiPer GL RTK GPS system. The 
range pole used for the roving receiver was equipped with a 10 m diameter base 
plate to prevent the pointed tip from sinking into the peat and causing a downward 
bias in elevation measurements. The nominal point spacing of these measurements 
was 5 m, although measurements could not be collected in a few localized areas 
due to either the presence of standing water or forest canopy cover. An offset of 
+6 cm was observed for survey points relative to LiDAR elevations, including over 
barren limestone outcrop features. This offset was attributed to a possible shift in 
the local benchmark used for the base station, or in the setup of the base station 
receiver overtop of it. A correcting offset of −6 cm was therefore applied to the 
survey elevations.

For each survey point, the nearest bare earth LiDAR return was identified within 
a maximum 2.5 m radius and used for accuracy assessment. Any points without a 
LiDAR bare earth return within a maximum ground distance of 2.5 m were discarded 
from subsequent analyses. For the remaining 223 observations, RMSE was calculated 
by comparing survey point elevations to the nearest LiDAR ground return elevation. 
The standard deviation of the difference in observed versus LiDAR-derived elevations 
was also calculated. Finally, we repeated this analysis using smaller values for the 
maximum ground distance (1.0, 0.5, 0.25, and 0.1 m). This had the effect of reducing 
the number of paired observations available for the analysis, but decreased the 
ground distance between observation pairs. The purpose of this was to first produce 
a conservative accuracy assessment using a wider search radius and larger sample 
size, followed by more optimistic estimates based on smaller search radii and sample 
sizes. The assumption was that smaller search radii would produce lower RMSE and 
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standard deviations compared to larger search radii and might be more representative 
of the accuracy of individual ground return elevations. The need for this analysis 
reflects the difficulty of precisely colocating manual survey points with individual 
LiDAR ground returns with inherently low horizontal positional accuracy (on the 
order of ± 60 cm).
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FIGURE 15.2  One-meter resolution LIDAR-derived DEM (top) and satellite-derived 
IKONOS (bottom) imagery of the study site, showing the location of the topographic survey 
transect (ST1) and five additional elevation profile transects (B1 = longitudinal cross section 
of a bog, B2 = transverse cross section of a bog, FWT1 = fen water track draining from bog, 
CF1 and CF2 = longitudinal cross sections of channel fens).
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15.4.2.3  Topographic Profiles
ArcGIS Desktop 10.5.1 (ESRI, 2016) was used to digitize six topographic profiles, 
including one along the 1.6 km survey transect (ST1) described previously. The 
locations of these profiles are indicated in Figure 15.2, and were chosen to represent 
different peatland features, including longitudinal and transverse profiles of a domed 
bog (B1 at 3000 m and B2 at 800 m), and downslope profiles of two channel fens 
(CF1 at 3000 m and CF2 at 800 m) and a fen water track (FWT1 at 800 m) or ladder 
fen draining radially off a domed bog toward a channel fen. The average topographic 
gradient was calculated from the slope term of a fitted linear regression model of 
elevation versus distance for each transect. For the transverse bog dome profile, B2, 
average gradient was calculated separately for each side of the dome.

15.4.2.4  Soil Moisture Surveys
On three dates during the summer of 2012 (July 1, August 1, and August 28), near-
surface volumetric soil moisture (VSM) measurements were collected along the 
survey transect (ST1) using a HydroSense handheld time domain reflectometer 
(TDR) equipped with 12 cm length probes (Figure 15.3). In total, 14 clusters of 
soil moisture observations were visited on each date. The cluster locations were 
chosen at equally spaced distances along ST1 and shifted at least 30 m to the side 
to avoid having the influence of the transect in subsequent image analysis steps. 
At each cluster a center flag was set up, followed by at least four additional flags at 
8 m distances from the center in each of the four cardinal directions. At each flag, 
three TDR measurements were collected in a hummock feature, and three were 
collected in a hollow feature, provided that both features were present. The average 
of three measurements was calculated for each hummock and hollow at each flag. 
The TDR probes were inserted at a 45° angle for an approximately 7.5 cm depth 
integrated measurement. At some cluster sites, additional flags were inserted for 
TDR readings to achieve representative sampling of hummocks and hollows for 
that site (Figure 15.3).

15.4.2.5  Digital Terrain Analysis and Soil Moisture Models
All digital terrain analyses were conducted using the System for Automated 
Geoscientific Analysis (SAGA) GIS program (Conrad et al. 2015). TWI was 
computed using three different algorithms at three different DEM resolutions (1, 
2.5, and 5 m) following hydrologic preprocessing with two different methods, for 
a total of 18 different realizations. The TWI methods differed primarily in the way 
in which water is distributed downslope through the DEM grid cells. We tested (1) 
TWI based on deterministic-8 (D8) flow routing (TWI-D8); (2) TWI based on a 
maximum downslope gradient (TWI-MDG) as described by Qin et al. (2011), which 
distributes flow from one pixel to multiple neighboring pixels as a function of the 
maximum local slope; and (3) the SAGA wetness index (SWI), which allows for more 
significant redistribution of water over flat areas of the landscape, as described by 
Böhner and Selige (2006). For hydrologic preprocessing prior to calculation of the 
TWI surfaces, we used the Sink Removal module after the Sink Routes module with 
(1) the Fill Sinks option, and (2) Deepen Drainage Routes option. Both methods cause 
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artificial modifications to the DEM, which can strongly impact subsequent analyses 
and observed spatial patterns (Lindsay and Creed 2005). The fill method raises a 
sink pixel elevation to the minimum of its surrounding eight neighbors, whereas the 
deepen method, or breaching, lowers the elevation of one of the surrounding eight 
pixels to the elevation of the sink pixel.

Regression analysis was used to model the relation between the various TWI 
realizations and near-surface soil moisture at two different scales. The point-scale 
models were based on average VSM measurements taken at each flag site (n = 120), 
and the aggregated models were based on an average of all flag sites at each cluster 
(n = 20). Separate models were produced for different wetland microforms: (1) 
hummocks only, (2) hollows only, and (3) hummocks and hollows. VSM observations 
were averaged across all three sampling dates to simplify the total number of models 
required.

Finally, we tested for the relation between VSM and a derivative representing 
local topographic position derivative, the DME, computed at multiple scales from 
a nonhydrologically preprocessed, 1 m resolution DEM. DME is calculated from 
a moving window of specified radius and calculates a value for the central, target 
pixel, which is the elevation difference of that pixel relative to the mean elevation 
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FIGURE 15.3  Map of survey transect (left) showing soil moisture survey sites with inset 
maps (bottom and top right) for detail.
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of all pixels in its neighborhood. Thus, DME represents local topographic position 
within an area defined by the moving-window radius and can represent relief 
at multiple scales. One advantage of this derivative is that it does not require 
hydrologic preprocessing or additional algorithmic choices related to flow routing, 
as is the case with TWI. Moreover, it can preserve high-resolution elevation 
information while increasing the neighborhood size in order to test for scale 
effects. Difebo et al. (2015) used DME to improve an ecosystem classification 
map for the same study region and found the largest window sizes to be most 
effective (up to 150 m radius). For the present study, DME was calculated with 
sequentially larger neighborhood radii: 3, 7, 15, 30, and 70 m. As with the TWI 
models, regression models were fit for different microform types, but only at the 
point scale.

15.4.3 R esults and Discussion

15.4.3.1  LiDAR Ground Return Elevation Accuracy Assessment
LiDAR-derived surface elevations along the 1.6 km transect S1 cross two stream 
channel basins, with a drainage divide located at approximately 700 m (Figure 15.4). 
These features are clearly captured within the data, despite the very low range in 
elevation (2.0 m total relief). The LiDAR elevation transect shows high local variability, 
on the order of approximately 50 cm over distances of ∼5–50 m. A similar scale of 
local topographic variability is also observed in the manually surveyed elevations, 
although there is not always a clear correspondence between LiDAR-derived versus 
surveyed elevations over short distances. Nevertheless, the surveyed elevations clearly 
reflect the mesoscale topographic relief along this transect, including two stream 
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FIGURE 15.4  LiDAR-derived elevations interpolated at 1 m spacing along the 1.6 km survey 
transect, and 224 manual survey elevations used for the point-to-point accuracy assessment.
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valley bottoms and a corresponding drainage divide, as captured by the higher density 
LiDAR surface elevations.

The overall RMSE for all 224 surveyed points was found to be 0.10 m. This is 
among the lowest elevation error magnitudes reported in Table 15.2 for point-to-point 
comparisons and may reflect the relatively low density of vegetation conditions at the 
study site compared to many of the cited studies. Our error assessment was based on 
a point-to-point comparison, whereby the LiDAR ground return that was closest to 
a survey elevation point was used paired with that surveyed point for the accuracy 
assessment. A problem with this approach is the inherent ambiguity in the actual 
ground surface distance between a surveyed point with high positional accuracy 
and a single LiDAR ground return with lower positional accuracy. Moreover, as the 
ground return point density decreases (e.g., in areas of higher vegetation density), 
the likelihood of a ground return point being found within close proximity (e.g., 
less than 1 m) to a survey point decreases. To help address this issue, we repeated 
the accuracy assessment several times while sequentially reducing the maximum 
ground distance separation between a surveyed elevation point and associated ground 
return. Although this has the effect of reducing the number of observations for the 
accuracy assessment, it also reduces the observed error, as seen in Figure  15.5. 
Notably, with a maximum separation distance of 2.5 cm, only four observations 
were available for comparison, but the RMSE was reduced from 10.0 to 4.6 cm. 
This analysis demonstrates that individual ground return accuracy may in fact be 
better than what is typically reported due to the challenge of colocating a manual 
survey point with a LiDAR return. As the ground return point density decreases 
(e.g., in areas of higher vegetation density), this problem is exacerbated because the 
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likelihood of colocating survey points with ground returns within a minimum ground 
separation distance decreases. Thus, while various researchers have found vegetation 
to introduce positive biases in ground surface elevations, our analysis also suggests 
that an increased random error component may also be introduced due to lower 
ground return densities, hence the larger ground separation distance between manual 
versus LiDAR ground returns. Figure 15.4 demonstrates that, despite the ambiguity 
of individual ground return accuracy of short length scales and lack of large-scale 
relief, the mesoscale relief on the order of 1–2 m, including drainage structures and 
watershed divides, is still captured within the LiDAR DEM.

15.4.3.2  Peatland Morphology Examples
Although typically flat and devoid of large-scale topographical relief, peatlands 
exhibit characteristic geomorphologies that can be quantified with high-resolution 
topographic data (Richardson et al. 2010; Difebo et al. 2015). Figure 15.6 shows five 
examples of topographic profiles derived from a 1 m LiDAR-derived bare earth DEM 
for the study site, including bog and fen features, which together occupy more than 
90% of this landscape. Transects B1 and CF1 are equal-length, longitudinal transects 
for a bog and channel fen, respectively. While they exhibit similar average gradients, 
the profiles demonstrate differences in surface morphology, with a clear pattern of 
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FIGURE 15.6  Elevation profiles for transects shown in Figure 15.2. Note different transect 
lengths for the top two transects (3000 m) compared to the bottom three transects (800 m).
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ridges and pools for the channel fen transect (CF1) giving rise to a lower frequency 
periodicity of surface undulations compared to the bog transect (B1). The shorter 
channel fen transect (CF2) also exhibits a similar ridge-pool periodicity. The ridge-
pool succession observed for the fen water track (FWT1) transect shows a higher 
periodicity indicative of smaller ridge-pool features drainage off the larger bog dome 
structure. CF2 and FWT1 transects both exhibit a steeper average gradient (0.14% 
and 0.2%, respectively) than the larger channel fen transect, CF1, and longitudinal 
bog transect (B1). The convex, raised dome structure seen for transcet B2 shows a 
dome height of approximately 0.8 m above the confining stream channels, as well 
as a slight asymmetry, most likely due to differences in base heights of the stream 
channels on either end of the transect. The rand slope (i.e., the sloping margin of a 
raised bog) exhibits higher average gradients (0.25%–0.26%) compared to any of the 
other transects shown.

In summary, despite some ambiguities in the accuracy of individual LiDAR 
ground return elevations as discussed in Section 15.4.3.1, Figures 15.5 and 15.6 
demonstrate that LiDAR-derived surface topography can be used to quantitatively 
describe subtle, mesoscale geomorphic characteristics of some representative bog and 
fen forms in the James/Hudson Bay Lowlands. Given the synoptic nature of LiDAR 
surveys, this presents new possibilities for advancing current understanding of how 
peatland ecosystems evolve over timescales of centuries to millennia. Moreover, 
efforts to mathematically model peatlands as complex adaptive systems would benefit 
from LiDAR-derived surface topography for calibration and validation (Table 15.3).

15.4.3.3  Digital Terrain Analyses and Soil Moisture Model Results
Given the large number of algorithms available for computing TWI, as well as 
DEM resolution and hydrologic preprocessing options, it is unclear from previous 
research what options would be most suitable for application in low-gradient, 
wetland-dominated environments such as the James/Hudson Bay Lowlands. 
The results presented in this section demonstrate that such choices have a strong 
impact on simulated patterns of wetness at our study site. An example of the six 
different methods for calculating TWI is shown in Figure 15.7 at 2.5 m resolution. 
Qualitatively, the hydrologic preprocessing method (breach versus fill) has the largest 
impact on the spatial pattern of TWI. Realizations based on the fill method exhibit a 
more diffuse pattern of wetness compared to breach-based realizations, which exhibit 
more concentrated patterns of moisture distribution. Moreover, fill preprocessing 
appears to result in stronger differences among the three different TWI algorithms. 
Conversely, there appears to be little difference among TWI-D8 and TWI-MDG 
for the scenarios based on breach preprocessing. The SWI algorithm produces 
more distributed spatial patterns of wetness compared to the TWI-MDG algorithm, 
particularly with fill preprocessing.

As seen in Table 15.4, regression model results for VSM vary among the different 
TWI algorithms and preprocessing methods, corroborating the qualitative differences 
seen in Figure 15.7. DEM resolution also strongly influences the explanatory power 
of TWI. Overall, the point-scale models demonstrate lower predictive power of 
TWI compared to the aggregated models. For simplicity, therefore, the subsequent 
discussion focuses on the aggregated model scenarios.
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The aggregated models were based on a sample size of 20, with each observation 
representing the average VSM for four to six hummock and hollow measurements 
within a cluster with an average radius of approximately 16 m. Models based on 
hummocks only were mostly insignificant, whereas soil moisture in hollow features 
were almost always statistically significant, with many models explaining more 
than 50% of the spatial variation in VSM. Compared to hollows, hummocks tend to 
have very low bulk density due to the presence of live mosses and other vegetation 
causing very low VSM readings and consequently low overall variability. Moreover, 
hummocks represent fine-scale topographic highs, often over very short length scales, 
and may not be adequately captured given the point density of the LiDAR ground 
returns in this study (< 1 m−2).

For hollows only, the best overall model was achieved using the SWI algorithm 
at 2.5 m resolution. However, SWI performed poorly at 1, 5, and 10 m resolutions. 
Conversely, TWI-MDG resulted in relatively strong models under both preprocessing 
scenarios and at both 2.5 and 5 m resolutions, but not 1 and 10 m. Models for 
hummocks and hollows largely followed the same patterns as for hummocks only. 

TABLE 15.3
Some Studies Reporting Point-to-Point LiDAR Ground Elevation Accuracy 
Assessments in Wetland Environments

Wetland or Vegetation Type

Vertical Error

AuthorsBias (m)

Standard Deviation 
(and/or RMSE if in 

Brackets) (m)

Grass/herbs 0.02 0.10 Hopkinson et al. (2005)

Low shrubs 0.06 0.12 Hopkinson et al. (2005)

Tall shrubs 0.06 0.03 Hopkinson et al. (2005)

Aquatic vegetation 0.15 0.22 Hopkinson et al. (2005)

Deltaic wetland—Bare 0.00* (0.07) Töyrä et al. (2003)

Deltaic wetland—Graminoid 0.07* (0.15) Töyrä et al. (2003)

Deltaic wetland—Willow 0.15* (0.26) Töyrä et al. (2003)

Deltaic wetland—Dead willow 0.14* (0.17) Töyrä et al. (2003)

Salt marsh 0.1 0.12 Hladik and Alber (2012)

Salt marsh −0.01** 0.09 Hladik and Alber (2012)

Forested wetland 0.00* (0.10) Richardson et al. (2010)

Salt marsh—all 0.15 0.18 (23.3) Schmid et al. (2011)

Salt marsh—Spartina alterniflora 0.11 0.11 (0.16) Schmid et al. (2011)

Salt marsh—Juncus roemerianus 0.30 0.22 (0.37) Schmid et al. (2011)

Salt marsh—Borrichia frutescens 0.11 0.10 (0.15) Schmid et al. (2011)

Salt marsh—Salicornia virginica 0.02 0.12 (0.12) Schmid et al. (2011)

Salt marsh 0.13 0.12 (0.07) Morris et al. (2005)

Northern peatland 0.00* 0.10 (0.10) This study

*	 Bias after offset correction; **	Bias after block adjustment correction.
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This likely reflects the contribution of hollow features to the overall variability in 
terrain wetness and associated relations with TWI (Figure 15.8).

For point models (n = 120), virtually none were significant at 1 m resolution 
for breach preprocessing scenarios or for hummock models. At 2.5, 5, and 10 m 
resolutions, most models were weakly significant (R2 ≤ 0.2). For fill preprocessing 
scenarios, the best point models were achieved for TWI realization based on the 
more distributed flow routing algorithms (TWI-MDG and SWI). TWI-MDG was 

SWI

N
300 metres150750

TWI-MDG

TWI-D8

High : 23.1

Low : 0.58

High : 23.40

Low : 0.58

High : 23.4

Low : 0.46

High : 21.4

Low : 0.63

High : 23.1

Low : 0.51

19.3

0.34

Breach pre-processing Fill pre-processing

FIGURE 15.7  Examples of TWI surfaces calculated using three different algorithms (top, 
middle, and bottom panels) after breach (left) versus fill (right) hydrologic preprocessing, as 
described in Section 15.4.2.5.
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a more robust predictor of VSM for 1–5 m resolutions, compared to SWI, although 
SWI models generally performed the best of all point models, and at a resolution 
of 1 m (R2 = 0.42 for hummock models, R2 = 0.38 for hummock and hollow 
models). At 10 m resolution, model goodness of fit generally decreased compared 
to the higher resolution scenarios. Otherwise, there was no consistent effect of 
resolution on the goodness of fit for models based on the more distributed flow 
routing algorithm.

Overall, these findings demonstrate strong scale dependence of TWI-based VSM 
models in this peatland landscape, as indicated by the effect of DEM resolution 
and aggregation of point scale models. Our results also demonstrate an important 

0 25 50 100 metres

0 250 500 1000 metres

FIGURE 15.8  Comparison of IKONOS imagery versus DME computed from 1 m resolution 
LiDAR DEM using a 30 m radius moving-window neighborhood. DME captures local 
topographic forms that correspond well to different types of peatland formations, including 
two ladder fens shown in bottom panels.
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effect of flow routing and hydrologic preprocessing algorithms on digital terrain 
analysis outputs and associated models. Although VSM models varied widely across 
the different model scenarios, it was shown that distributed flow routing algorithms 
tended to work more effectively than the commonly used D8 algorithm. This 
corroborates the findings of Lang et al. (2013), who demonstrated that TWI indices 
based on more distributed flow routing algorithms were more suitable for wetland 
mapping in a humid, temperate region watershed in the U.S. Coastal Plain region. We 
also found that moderate DEM resolution models (2.5 and 5 m resolution) generally 
performed better than higher (1 m) and lower (10 m) resolution for the aggregated 
models. For point-scale models, which generally underperformed compared to 
aggregated models, the best models were achieved at higher (1–5 m) resolutions. In all 
cases, soil moisture in hummocks could not be well predicted by TWI at any scales. 
Thus, plot-scale soil moisture is driven largely by wetness conditions of hummocks 
in this landscape.

Finally, for point-scale models, the DME derivative was found to outperform 
all TWI models for the prediction of VSM (Table 15.5). The maximum coefficient 
of determination for hummock and hollow models combined was 0.47, compared 
to 0.39 for the highest performing TWI model. The optimal scale for the DME 
calculation was determined to be a radius of either 30 or 70 m, with performance 
dropping substantially for both smaller and larger window sizes. Since the scale 
of analysis is defined by the radius of the moving window, the DEM resolution 
was not varied for these scenarios. An advantage of this derivative is the ability to 
test the effect of different analysis scales while preserving a high DEM resolution. 
Moreover, DME does not require hydrologic preprocessing or testing of different 
types of algorithms, as in the case of TWI. DME outperformed TWI, which implies 
that the upslope contributing area does not help in the prediction of surface soil 

TABLE 15.5
Point-Scale VSM Models Based on DME Derivative Computed at 
Multiple Resolutions from an Unprocessed 1 m Resolution Digital 
Elevation Model

Scenario

Analysis Neighborhood (Radius)

3 m 7 m 15 m 30 m 70 m 150 m

Hummocks + hollows n.s. 0.10** 0.31*** 0.47*** 0.46*** 0.21**

Hollows only n.s. 0.12*** 0.38*** 0.52*** 0.47*** 0.25**

Hummocks only n.s. n.s. n.s. n.s. n.s. n.s.

Note:	 n.s. = not statistically significant. All slopes were negative and are not indicated for brevity. 
After Bonferroni correction for 18 tests, only models with p < 0.01 should be considered 
significant at the 90% significance level. For comparison with TWI, these results should be 
compared to the point-based scenarios reported in Table 15.4.

* p < 0.05; ** p < 0.001; *** p < 0.0001.
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moisture in this landscape. Rather, local topographic variability within a radius 
defined by 30–70 m appears to most strongly correlate with soil moisture in this 
peatland complex.

In summary, the results of this study allow us to recommend that, for the 
purpose of surface moisture mapping with the TWI in a northern peatland complex, 
researchers should use higher resolution DEMs (1–5 m) that have been preprocessed 
using a sink-fill algorithm. Distributed flow routing methods should be preferred 
over deterministic methods, and at higher spatial resolutions. However, due to the 
large number of algorithms available for calculating TWI, results may vary widely 
depending on the specific choices made. Instead, we recommend the simpler metric, 
DME, which requires fewer algorithmic decisions and which outperformed all 
realizations of the TWI in the prediction of surface soil moisture patterns.

15.5  CONCLUSION

Remote sensing with airborne LiDAR has become an important and active area of 
wetland science research in the past two decades. We have presented a review of 
this expanding field with examples from a wide range of wetland ecosystem types, 
including forested wetlands, northern peatlands, freshwater marshes, salt marshes, 
mangroves, and floodplain environments. LiDAR remote sensing allows for three-
dimensional characterization of ground and vegetation features, which provide 
valuable information on wetland form and function. This information can be used 
for detection and classification of wetland ecosystems, hydrologic and geomorphic 
analysis, and wetland restoration.

Issues and challenges arise in the application of digital vegetation and terrain 
analysis in wetland environments with airborne LiDAR, requiring careful 
consideration on behalf of the researcher. Wetlands are frequently characterized by 
short and dense vegetation, which can be challenging to detect and analyze compared 
to taller vegetation typical of forested environments. Low-lying, dense vegetation 
also introduces error in ground return elevations to reduced laser penetration and 
related challenges associated with classifying laser pulse returns into ground versus 
aboveground features. These errors may be exacerbated by local-scale topographic 
variability and may be high relative to the surrounding topography, given that wetland 
environments lack large-scale relief. Nevertheless, mesoscale topographic gradients 
can be well characterized in wetland environments, even in areas with slope gradients 
on the order of only 0.1%. Moreover, biophysical characteristics of wetland vegetation 
inferred from aboveground returns can be linked to wetland ecosystem classes, flood 
periodicity, and water sources.

Through a case study of a northern peatland complex in the James/Hudson 
Bay Lowlands, we demonstrated concepts related to the accuracy of LiDAR-
derived ground surface elevations, as well as geomorphic and hydrologic analysis. 
Ground return elevations had an average RMSE of 0.10 m based on a point-to-point 
comparison, although we demonstrated this estimate of error to be conservative due 
to ambiguities associated with horizontal positioning of LiDAR ground returns. As 
a result, relative vertical accuracy may be considerably better than 0.10 m. Even 
under this conservative estimate of ground elevation errors, however, LiDAR-derived 
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topography was found to accurately capture mesoscale topography, and can be used 
to analyze hydrologic gradients as well as different types of peatland landforms such 
as raised bogs, channel fens, and ladder fens.

The well-known and commonly used TWI was found to correlate moderately 
well with local surface soil moisture patterns, although results varied widely as a 
function of DEM resolution, hydrologic preprocessing technique, and flow routing 
algorithms. VSM of hummocks (locally raised microforms) was not adequately 
modeled by TWI, whereas VSM of local depressions (hollows) could be moderately 
well explained by the index. We found the results of this analysis to be scale sensitive, 
with improvements being realized through aggregation of field observations up 
to the plot scale. Given some of these challenges associated with the TWI, we 
tested a simple, scalable derivative, DME, which describes local topography. At the 
point scale, DME computed at 1 m resolution, using a local neighborhood defined 
by a radius of either 30 or 70 m, outperformed all TWI realizations. The DME 
derivative requires no hydrologic preprocessing or other algorithmic choices and 
can be easily adapted to different scales of relief while preserving the original input 
resolution. These case study results corroborate other studies in demonstrating the 
outstanding capabilities of airborne LiDAR surveying to provide highly detailed, 
synoptic information on wetland biophysical and hydrologic information over large, 
remote areas.
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16 Fraction Vegetation 
Cover Extraction Using 
High Spatial Resolution 
Imagery in Karst Areas

Xiangkun Qi, Chunhua Zhang, 
Yuhong He, and Kelin Wang

16.1  INTRODUCTION

Karst is a type of landscape formed above carbonate bedrock. About 15% of 
global land has some form of karst landscape, either aboveground or belowground. 
Southwestern China contains one of the largest karst landscapes in the world, with 
an area of about 540,000 km2 (Su, 2002). Karst is one of the most fragile landscapes 
worldwide (Legrand, 1973; Parise and Gunn, 2007). Meanwhile, the large population 
of southwestern China has frequently overexploited the sloped lands with inappropriate 
agricultural practices over the last half of the twentieth century, which has caused the 
rapid decline of ecological conditions in the karst area (Wen et al., 2011). Therefore, 
environmental problems, such as karst rocky desertification (KRD) (the loss of soil 
and vegetation cover and exposure of bedrock outcrop), water shortage, and land 
subsidence in karst regions, are becoming of increasing concern.

Vegetation, which serves as an indicator of environmental change and a primary 
producer of the global ecosystem, plays an important role in the matter as well as in 
energy cycles (Pregitzer and Euskirchen, 2004). It also promotes soil development, 
regulates the regional and local climate, and provides habitats for wildlife. In 
karst areas, vegetation is important for keeping soil from eroding, reducing the 
occurrence of KRD, and protecting regional water resources. Traditional vegetation 
studies based on field measurements are labor intensive, time consuming, and costly. 
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Furthermore, only sample point data are available from field surveys. Remote sensing 
technology has been widely applied to monitor environmental change and recovery 
in southwestern China (Jiang et al., 2014). Satellite sensors could acquire data for 
large areas in a short time and have a relatively low cost. Moreover, more than 40 
years’ worth of satellite image collections (i.e., Landsat imagery) and various spatial 
and spectral resolutions make remote sensing technology one of the most powerful 
tools for land surface monitoring. Another advantage of applying remote sensing 
techniques in vegetation monitoring is their ability to integrate with different sources 
for a better understanding of spatial and temporal changes in ecological dynamics 
of karst regions.

There has been increasing application of remote sensing technology to study 
karst vegetation dynamics and the progress of recovery, starting in the 21st century 
(Tong et al., 2016). Medium- and coarse-resolution satellite data have been applied 
to vegetation monitoring in karst regions. Commonly used medium- and coarse-
resolution satellite imagery include the Landsat Thematic Mapper (TM) (e.g., Yang 
et al., 2011; Bai et al., 2013), ASTER (e.g., He et al., 2008; Xiong et al., 2013), MODIS, 
and SPOT-VGT images (e.g., Zhang et al., 2014; Wang et al., 2015; Tong et al., 2016). 
However, few researchers have discussed the rationale behind imagery resolution in 
karst areas. High spatial resolution images (e.g., SPOT-5 and IKONOS) are commonly 
used to extract ground truth data for accuracy assessment, but they have not been used 
for vegetation monitoring in this region.

The karst regions have high heterogeneity within the landscape. Some common 
landforms include towers, valleys, sinkholes, poljes, and cockpits (Zhang et  al., 
2011). The typical subtropical monsoon climate and carbonate bedrock environment 
create a unique surface-underground dual hydrology system. Although there is an 
ample amount of precipitation (average precipitation = 1000–1800 mm), surface 
water can flow into the underground water system through sinkholes and crevices. 
Consequently, it is common to see droughts in the rainy season in the karst area (Fan 
et al., 2011). One of the influences of this inflow is that surface soil moves into the 
underground water system. This makes the surface soil in karst regions shallow and 
patchy. These features—drought, lack of soil, and high intensity of anthropogenic 
disturbances—cause the strong heterogeneity within vegetation communities in the 
karst area (Li et al., 2003). High-resolution imagery could provide more detailed 
vegetation information that would be helpful in exploring the mechanisms of 
vegetation dynamics. From this perspective, high spatial resolution imagery is a 
promising prospect in karst vegetation monitoring.

Vegetation indices are commonly used to extract vegetation information, 
particularly the normalized difference vegetation index (NDVI), which has been 
widely applied to extract fraction vegetation cover (FVC) information (Wang et al., 
2014; Xie et al., 2015). FVC is an important parameter for modeling carbon, water, 
and energy exchanges (Xiao and Moody, 2005). Considering the high heterogeneity of 
karst land surfaces, linear spectral mixture analysis (LSMA) is a practical method for 
extracting subpixel FVC and other fraction information from images. This approach 
assumes that the reflectance of one pixel is a mixture of the reflectance of features on 
the ground. The aim of LSMA is to separate the mixed pixel into a set of end-member 
spectra and estimate the percentage of end-members present in that pixel (fraction 
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images). LSMA has proven to be a useful method for identifying vegetation cover 
at the subpixel level for highly heterogeneous regions where vegetation is widely 
dispersed (Xiao and Moody, 2005).

A critical step for LSMA is end-member selection. Generally, LSMA hypothesizes 
that reflectance for one pixel is a linear mixture of end-members. The number of end-
members must account for all land feature types in the pixel (Theseira et al., 2002). 
LSMA allows the same number of land feature types for each end-member, and 
each material has a solid spectral response. However, the same material could have 
different spectral curves; this method does not incorporate the variability in natural 
conditions. Multiple end-member spectral mixture analysis (MESMA) is widely 
used to account for within-class spectral variability (Roberts et al., 1998). MESMA 
allows each pixel to use different combinations of end-members and overcomes the 
LSMA limitation of using the same number of end-members to model all pixels. 
The dominant FVC extraction in the karst is the dimidiate pixel model, which is 
commonly based on NDVI. To the best of our knowledge, there has been no attempt 
to use the MESMA approach to extract FVC in karst areas.

Strong terrain relief is one of the most important features of karst landforms. The 
rough landscape in southwestern China has taken shape through alternating stages of 
relative stability and uplift in Cenozoic carbonate rock (Wang et al., 2004). Terrain 
relief produces substantial shadowing in satellite images (Figure 16.1). Variations 
in terrain conditions and solar illumination in mountainous regions can affect the 
extraction of vegetation information from satellite imagery (Gao and Zhang, 2009). 
Topography can cause bidirectional reflectance and shadow effects, consequently 
altering surface reflectance (Song and Woodcock, 2003). The same vegetation species 
may have different spectral curves (Yue et al., 2011). Likewise, different vegetation 
types could have similar spectral responses. Weak reflectance from shaded areas 
complicates the extraction of vegetation communities. Therefore, these topographical 
effects are a limiting factor when using remote sensing technology in karst regions. 
Band ratio is commonly used in the southwest of China to minimize the change in 
solar illumination caused by topography (Tong et al., 2014; Xie et al., 2015). The 
use of additional digital elevation model (DEM) data may also benefit vegetation 
monitoring (Zhang et al., 2014).

Topographic correction models, such as the C correction model and the Sun-
Canopy-Sensor (SCS) model, have also been applied to Landsat imagery to minimize 
topographic effects (Qi et al., 2013). The results of topographic correction on Landsat 
imagery show very limited benefits for vegetation classification due to the large relief 
in karst peak and depression regions. Fine details in high spatial resolution imagery 
are often accompanied by noise, such as shadow effects. The topographic correction 
for high spatial resolution requires additional high-resolution DEM data, which are 
either expensive or hard to obtain. Therefore, reducing the shadow effects in high 
spatial resolution imagery is one of the most important preprocessing steps.

Our study explores the potential of the MESMA method to extract FVC in the 
karst area of southwestern China based on multispectral high spatial resolution ALOS 
data (10 m resolution). The aim is to verify the applicability of the spectral mixture 
analysis (SMA) approach in heterogeneous karst areas, and to analyze the impact of 
shadow effects on FVC extraction.
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16.2  STUDY AREA

Our study area is located in southwestern China (Duan County, Guangxi Province). 
The topography is rugged, with elevation ranging between 230 and 870 m. The 
climate is warm moist subtropical, with mean annual precipitation of 1090–1920 mm 
and a mean annual temperature of 20°C. The maximum precipitation, recorded in 
the summer months, accounted for 45%–60% of the annual precipitation. Typical 
landforms in this region are tower karsts and depressions, with 60% of the study area 
having slope angles steeper than 25°. Although the dominant vegetation community 
in the area is subtropical evergreen forest, a mass of grass and shrub exists, and 
the landscape is fragmented because of severe human disturbances and geological 
limitations (Figure 16.2). This area has a relatively high population density and more 

(c)

(a)

(c)

(b)

FIGURE 16.1  Shadow effects in the karst area. Satellite images (a) and (b) included a mass 
of shadow areas. (a) A section of a Landsat 8 image taken on December 30, 2014, in Dahua 
County, Guangxi Province. (b) A detailed view of a depression on a SPOT-5 image, taken on 
December 15, 2014, and extracted from Google Earth. (c) A photo, corresponding to (b), taken 
on July 22, 2011, during the field trip.
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than 1000 years of agricultural development. Tree cutting for timber and excessive 
agricultural practices on the sloped land have led to the disappearance of the forested 
areas in the karst regions from the 1950s through the 1980s (Wen et al., 2011). To 
restore the degraded karst vegetation, some ecological restoration projects, such as 
the Grain for Green program and the banning of logging, were implemented in this 
fragile karst region.

16.3  DATA AND METHODS

The ALOS imagery (Figure 16.3) was acquired on June 4, 2009. The data contained 
four multispectral bands (blue, green, red, and near-infrared [NIR]) with 10 m 
spatial resolution, and a panchromatic band with 2.5 m spatial resolution. The data 
have a relatively large sun elevation angle (72.5°), which should reduce topographic 
effects on the images (Song and Woodcock, 2003). However, there was an obvious 
shadowed area on the image because of the rugged terrain relief, of which the average 
slope is 45°. All images went through L1G processing (systematic correction) and 
georeferencing, and then were projected to a Universal Transverse Mercator (UTM) 
map projection. The original multispectral and panchromatic imagery were fused by 
the Gram–Schmidt procedure in the ENVI software package (Laben and Brower, 
2000) to produce four-band pan-sharpened multispectral ALOS imagery with 2.5 m 
spatial resolution for the quantitative assessment of linear spectral unmixing results.

Cropland Grass–shrub land

Shrub land Forested land

FIGURE 16.2  Vegetation landscapes in the karst area.
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Traditionally, the end-members for one pixel in a karst region could be 
photosynthetic vegetation, nonphotosynthetic vegetation, shadow, water, bare soil, 
or bare rock (Wan and Cai, 2003; Yue et al., 2011). Nonphotosynthetic vegetation and 
bare soil are commonly found on land surfaces in the winter season. The preceding 
two classes were recorded in the growing season, when the nonphotosynthetic 
vegetation was hard to find and the bare soil was covered by crops. Therefore, only 
four types of end-members were available in the study area. We chose the vegetation-
high albedo-shadow (vegetation-rock-shadow) model for spectral mixture analysis, 
after masking the water area.

MESMA was applied to extract fraction vegetation cover. This approach assumes that 
the spectrum measured by a sensor is a linear combination of the spectra of all components 
within the pixel (Adams et al., 1993). The mathematical model can be expressed as

	
R f Rk ik i

k

n

i = +
=∑ ε

1 	
(16.1)

where i is the number of spectral bands used; k is 1, … , n (number of end-members); 
Ri is the spectral reflectance of band i of a pixel, which contains one or more 
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FIGURE 16.3  Multispectral ALOS imagery of the karst area (NIR, red, and green bands 
as R, G, B).
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end-members; fk is the proportion of end-member k within the pixel; Rik is the spectral 
reflectance of end-member k within the pixel on band i; and εi  is the error for band i. 
To solve for fk, the following conditions must be satisfied: (1) selected end-members 
should be independent of each other, (2) the number of end-members should be less 
than or equal to the number of spectral bands used, and (3) selected spectral bands 
should not be highly correlated. Therefore, there were a maximum of three end-
members in four-band ALOS data, theoretically. A common approach for obtaining 
fk is to use a least-squares solution by minimizing the residual error. The sum of fk of 
all optical end-members equals 1.

The spectral mixture analysis procedure presented here consists of two main steps: 
(1) selection of the optimal end-members to form the definitive spectral library, and 
(2) decomposing the mixed pixels to calculate the fraction images. Identifying a 
high-quality set of image end-members has been defined as a critical stage of spectral 
mixture modeling (Tompkins et al., 1997).

For the MESMA method, the end-member average root-mean-squared error 
(RMSE) (EAR) approach was used to select the most appropriate end-members. The 
end-members are selected by producing the lowest RMSE within a class (Dennison 
and Roberts, 2003). EAR can be expressed as shown in Equation 16.2:

	
EAR

RMSE
i

i j
i

N

n
=

−
=∑ ,

1

1 	

(16.2)

where i is an end-member; j is the modeled spectrum; N is the number of end-
members; and n is the number of modeled spectra. The −1 term corrects for the zero 
error resulting from an end-member modeling itself.

According to the most appropriate end-members, trials using just two optical end-
members (vegetation and rock) showed that three end-members (vegetation, rock, 
and shadow) were needed to accurately model the ALOS images in the karst region. 
To reduce the shadow effects, we performed a shade normalization of the fraction 
images, obtained by dividing each end-member by the total percent cover of all 
nonshade end-members (1 − shade fraction) in each pixel. This suppresses the shade 
fraction so that we obtain more information on the relative abundance of nonshade 
end-members (Rogan and Franklin, 2001).

Accuracy assessment was conducted using error matrices. Kappa variance was 
used to measure the accuracy of the achieved percentage estimate of vegetation 
cover (Congalton and Green, 2009). Overall accuracy (OA) for each class was also 
calculated. The percentage of vegetation cover was classified into five levels (0%–
30%, 31%–50%, 51%–70%, 71%–90%, and 91%–100%). Field validation sites were 
collected from 2007 to 2011. Percentage of vegetation cover was measured through 
visual estimation of cross walking and picture analysis. Most of the validation plots 
were located near the road or path because large relief mountain areas are hard to 
access. For measuring the vegetation cover in the shaded area, part of the reference 
points for accuracy assessments were determined by visual interpretation of pan-
sharpened multispectral ALOS (2.5 m) imagery, as well as a historical land use and 
land cover maps. Spatial resolution imagery of 2.5 m from Google Earth, in which 
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the materials in the shaded area could be seen clearly, was also used to identify the 
reference points. Finally, a total of 368 reference points (which included 116 points 
in the shaded area) were collected to verify the accuracy of the fraction vegetation 
cover from the ALOS data.

16.4  RESULTS

As mentioned, reference points were selected in both south-facing and shaded areas. 
To decrease the error of the visual estimation in the field, we classified vegetation 
cover into five intervals, each representing 20%. Whenever a predicted value fell 
within this interval, it was verified as correct. Classification results illustrated that 
vegetation cover could be successfully identified using MESMA for ALOS imagery 
(Table 16.1). The classification of vegetation cover in the south-facing area had better 
results than in the shaded area. Overall, accuracies in the south-facing area and the 
shaded area were 85.7% and 58.6%, respectively. The overall accuracy reached 77.2%. 
Kappa coefficients were 0.82 and 0.48, respectively, and the total kappa value reached 
0.71. Although the accuracy in the shaded area was lower than in the south-facing 
area, the mispredicted points (values) were close to the correct value. For example, 
when the referenced value was 31%–50% in the shaded area, the predicted value of 
11 was correct. Two mispredicted percentages of vegetation cover were 0%–30%, and 
seven mispredicted percentages were 51%–70% (Tables 16.1 and 16.2).

Comparing the predicted values in the south-facing area and the shaded area, there 
is an obvious consistency. The largest difference is 7.6%, in the interval of 31%–50%. 
In total, the value in the shaded area is a bit larger than that in the south-facing area, 
except for the high vegetation cover area (91%–100%) (Table 16.2).

Compared with the fraction vegetation cover map predicted using MESMA and 
NDVI data (Figure 16.4), the values from MESMA visually reduced the shadow 
effects. There is a slight difference in values between the south-facing area and the 
shaded area, while these two areas had a similar vegetation cover. NDVI data were 
more impacted by terrain relief. The value in the shaded area is lower than in the 
south-facing area.

16.5  DISCUSSION

We selected the vegetation-rock-shadow model to unmix the ALOS imagery in the 
highly heterogeneous karst region. Though the ALOS data were acquired with a 
large sun elevation angle, there is a visible shadow area in the imagery. The spectral 
scatterplot of the imagery formed a visible triangle in this study and the three vertices 
of the triangle represent vegetation, rock, and shadow end-members, respectively. 
Some researchers found that there was nonphotosynthetic vegetation and bare soil that 
were easily confused with bedrock (Wan and Cai, 2003; Yue et al., 2011). However, 
these researchers often used satellite imagery from the winter. One of the reasons 
for this is that the growing season is also the rainy season in the karst region, and it 
can be challenging to acquire cloud-free satellite imagery in the summer. Unmanned 
aerial systems (UASs) make it possible to acquire timely high spatial resolution 
images whenever weather conditions are suitable (Zhang et  al., 2017). The high 
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356 High Spatial Resolution Remote Sensing

spatial resolution UAS images would allow for much more detailed information to 
be extracted. Therefore, remote sensing experiments using UAS should be attempted 
in further studies in the karst region.

Fraction shadow cover was extracted using MESMA. We divided fraction vegetation 
cover and rock cover by the total percent cover of all nonshade end-members (1 − 
shade fraction) in each pixel, respectively. This shade normalization suppressed the 
shade fraction and obtained more information for nonshade end-members. Compared 
with NDVI data, this shade normalization assumed that vegetation and rock in shaded 
areas had similar spectral curves, and thus made a linear stretch to reduce shadow 
effects. The experiment results proved that this method surpassed nonlinear stretching, 

(a) (b)

(c) (d)

Coverage
100%

0

FIGURE 16.4  Contrast of vegetation cover in the south-facing area and the shaded area. 
(a), (b), (c), and (d) are ALOS imagery, with NIR, red, and green bands as R, G, B; fraction 
vegetation cover predicted using MESMA, NDVI, and fraction shadow cover, respectively. 
The yellow circle is the shaded area and the green circle is the south-facing area.

TABLE 16.2
Predicted Vegetation Cover (%) in the South-Facing Area and the Shaded Area

Vegetation Cover 0%–30% 31%–50% 51%–70% 71%–90% 91%–100%

South-facing area 18.0 38.1 59.9 75.3 92.0

Shaded area 18.3 45.7 60.5 80.2 88.8

Difference −0.3 −7.6 −0.6 −4.9 3.2
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such as NDVI. However, some studies showed that there was a difference in spectral 
responses in the shaded areas, according to the different materials (Fitzgerald et al., 
2005; Yang and He 2017). Fitzgerald et al. found that using two end-members (two 
spectral responses of different materials) unmixed better results than using only one 
end-member in the shaded area, based on MESMA. Yang and He (2017) recognized 
that the spectral scatterplots in the shaded area had a similar triangle shape to those 
in the south-facing area, and thus separated the nonshadow area and shadow area 
before using the SMA approach. However, Yang’s (2017) research was mainly aimed 
at urban areas, where the shaded areas are regular and could be separated. In the 
mountainous region, the shadow showed gradient change. The shadow percentage 
within each pixel varied, causing this to not be a suitable method. In further studies, 
imagery with more bands (such as WorldView-3, which contains eight bands) should 
be used to enable the selection of more end-members and to improve the accuracy of 
vegetation extraction in highly heterogeneous regions.

16.6  CONCLUSION

Prediction of vegetation cover in the highly heterogeneous karst regions in 
southwestern China, using the MESMA approach based on high spatial resolution 
ALOS imagery, successfully extracted fraction vegetation cover. The overall accuracy 
for the study area is 77.2%. However, the accuracy of vegetation cover estimation 
in the shaded area is lower than in the south-facing area, in spite of the fact that 
the difference in vegetation cover is marginal in the shaded and south-facing areas. 
The lower estimation accuracy in the shaded area is likely caused by shadows. The 
MESMA method is capable of reducing shadow effects in the terrain relief region. 
Future studies should explore suitable methods for vegetation cover estimations in 
shaded areas and reduce topographic impact in the karst region.
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17 Using High Spatial 
Resolution Imagery to 
Estimate Cherry Orchard 
Acreage in Michigan

Kin M. Ma

17.1  INTRODUCTION

This chapter will showcase how high spatial resolution imagery and related image 
processing techniques and methods can be applied to an agricultural context. Within 
the United States, the Michigan agricultural industry was valued at $7 billion in 
2011 (MDARD 2015), and by the year 2016 it had nearly doubled, resulting in a $13 
billion impact (MDARD 2017). The fruit industry has a $758 million impact and 
is important in feeding Michigan’s economy (MDARD 2017). In 2016, Michigan 
cherries generated $72 million, which was 9.5% of Michigan’s fruit industry (NASS 
2017). In 2005, Michigan tart cherry orchards produced 77% of all the United 
States’ tart cherry goods (Pollack and Perez 2009). Located in the northwest region 
of Michigan, the Grand Traverse Bay region has the highest concentration of cherry 
orchards in the entire state, and this region spans from Northport south to Traverse 
City, to the Old Mission Point peninsula, and then to East Bay’s Elk Rapids region 
(Figure 17.1). The combined factors of Lake Michigan’s lake effect snow and the 
moist mesoclimate of this area contribute to the high fertility of this cherry growing 
region.

CONTENTS

17.1	 Introduction................................................................................................... 361
17.2	 Study Area and Methods............................................................................... 363

17.2.1	 Study Area......................................................................................... 363
17.2.2	 Methods.............................................................................................364

17.3	 Results and Discussion.................................................................................. 367
17.3.1	 Results................................................................................................ 367

17.3.1.1	 Cherry Orchard Estimated Acreage Comparisons............. 370
17.4	 Conclusion..................................................................................................... 371
Funding Sources...................................................................................................... 371
Acknowledgments................................................................................................... 371
References............................................................................................................... 371

(c) ketabton.com: The Digital Library



362 High Spatial Resolution Remote Sensing

Since the early part of the twenty-first century, high-resolution commercial 
satellites, such as IKONOS and QuickBird, have produced 1 m or finer resolution 
images (Lillesand and Kiefer 2008). The IKONOS satellite has a 1.0 m panchromatic 
and a 4.0 m multispectral spatial resolution. With these high-resolution images, forest 
and agricultural inventories and monitoring can be effectively performed. Coops 
et al. (2006) utilized high-resolution QuickBird imagery to detect the damage to 
forests by mountain pine beetle infestations in British Columbia, Canada. The use 
of high-resolution imagery was able to easily identify tree crowns that had been 
infected by the pine beetle, by using a red-green index (RGI), which is the ratio of the 
reflectance between the red and green channels. The RGI can then signify the color 
changes that happen at the leaf level, in which diseased pine needles change from 
healthy green to diseased red (Coops et al. 2006).

In addition, in central California’s Marin County, high-resolution airborne data 
acquisition and registration (ADAR) imagery (1 m) were used to identify dead tree 
crowns that had succumbed to Sudden Oak Death. They were able to extract the 
dead tree crowns from surrounding bare soil patches by introducing a region-based 

Legend

Michigan Counties

0
E

N

W

S

5 10 20 Kilometers Projection: UTM, zone: 16 north

IKONOS image
Grand Traverse, East Bay

Benzie
Grand Traverse Kalkaska

Antrim

Charlevoix

Old M
iss

ion
 Pt

Leelanau

Grand
Traverse

Bay

FIGURE 17.1  Study area of Grand Traverse Bay, Michigan.

(c) ketabton.com: The Digital Library



363Using High Spatial Resol. to Estimate Cherry Orchards

subtraction algorithm to distinguish the surrounding bare soil patches from true dead 
tree crown patches (Sun et al. 2005).

Furthermore, Pasher and King (2009) utilized hybrid classification techniques, 
object-based classification (OBC), and spectral unmixing to detect canopy-level 
deadwood objects and had achieved field-validated accuracy of 94%. Since 2009, 
for remote sensing analyses of urban and agricultural regions, there has been an 
increased use of OBC techniques for image analyses and information extraction 
(Myint et al. 2011; Sasaki et al. 2012; Lizarazo 2014).

In regards to cherry fruit production, Imanishi et al. (2010) have investigated the 
use of reflectance and absorption spectra to determine the chlorophyll content of 
blooming cherry plants. They determined that a specific leaf chlorophyll index that 
incorporated a “difference and ratio combination type may be a useful method of 
chlorophyll content estimation” (Imanishi et al. 2010). Therefore, these remote sensing 
techniques were used to estimate the vibrancy of the chlorophyll in healthy cherry 
trees. Also, crop load estimates of sweet cherry orchards have been investigated by 
Santesteban et al. (2007).

In another agricultural application, Panda et al. (2016) used high-resolution 1 m 
National Agricultural Imagery Program (NAIP) imagery to help identify blueberry 
orchards in southeastern Georgia. They utilized eCognition software and object-
based image analyses (OBIAs) for analyzing and classifying the textural row patterns 
of the planted blueberry shrubs, and also differentiated the maturity growth levels 
of these shrubs.

Cherry orchard trees are also planted in a row-length pattern and the largest 
concentration of Michigan cherries are located in the northwestern Michigan region 
of Grand Traverse Bay. The use of high-resolution imagery and OBIA for cherry 
orchard acreage estimation has yet to be completed for this important agricultural 
region. One of the goals of this research was to estimate crop acreage because the 
U.S. Department of Agriculture’s (USDA’s) Marketing Order 930, which mandates 
that cherry fruit growers monitor and estimate their annual crop acreage (Agricultural 
Marketing Service 2012). This project aims to establish a baseline of cherry orchard 
crop acreage from previous historical reporting data and then develop specific 
algorithms and classification techniques to estimate the 2011 season cherry orchard 
crop acreage.

17.2  STUDY AREA AND METHODS

17.2.1 S tudy Area

The northwest region of Michigan has the highest concentration of cherries in the state. 
With the expertise of our research team, the study area of 152,000 acres was selected 
across the eastern side of the Leelanau Peninsula, from the Old Mission Point Peninsula 
of Grand Traverse County, to the Elk Rapids region on the western section of Antrim 
County (Figure 17.1). In order to best capture the acreage and vitality of this cherry tree 
growth, IKONOS image acquisition and field research occurred on the same day, July 
17, 2011. During July 17–18, 2011, our research team traveled to randomly distributed 
representative cherry orchard farms throughout this region. At each orchard location, the 
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research team, using a Trimble Juno global positioning system (GPS) receiver, acquired 
10–12 GPS point samples of cherry orchard trees in a rectangular pattern, beginning 
on an outside row, and moving four trees down that row, then continuing inward two 
rows, and coming back and then returning to the initial sample tree. Photographs were 
also taken of the cherry trees at each field site. Healthy cherry trees averaged 2.5–3.0 m 
(8.2–10.0 ft) in height, and mature cherry trees averaged 5 m in diameter. The field 
sites averaged about 1,000 m2 in size. A total of 25 field sites and 250 GPS points were 
collected. Since these collected field GPS points represented a small section of the study 
area, they were not used for reference and accuracy assessment, but as supplemental 
information to determine land cover classification categories.

17.2.2 M ethods

High-resolution IKONOS 1.0 m panchromatic and 4.0 m multispectral 16-bit radiometric 
images were acquired for Michigan’s Grand Traverse Bay region during the height of the 
harvest period, July 17, 2011 (Figure 17.1). The IKONOS 4.0 m multispectral imagery 
has four electromagnetic bands including blue, green, red, and infrared sections of the 
spectrum. The red and infrared bands are especially useful in distinguishing vegetated 
areas such as cherry orchards. The finer 1.0 m panchromatic resolution can delineate 
the texture of the orchard tree crowns. In order to maximize the advantage of the 1.0 m 
panchromatic image, the 4.0 m multispectral images were fused with the mosaicked 
panchromatic image through an ERDAS IMAGINE pan-sharpening process.

The ERDAS IMAGINE 2013 and OBIA eCognition 9.2 software packages were 
used to process the pan-sharpened IKONOS image with a large 13,000 MB size, 
consisting of processing hundreds of millions of pixels. Even with a very fast 64-bit 
server with 128 GB of available RAM, the eCognition processing of these large, 
complex images has caused the program to freeze and crash because of the very 
large total size of the mosaicked and pan-sharpened images. Therefore, these large 
images were subdivided into six small subsections for processing. For the case study 
within this chapter, image processing and analyses focused on the eastern section of 
the Grand Traverse Bay within Antrim County (Figure 17.1).

From previous image processing experience, we know that dense forest stands 
would often be misclassified as very dense orchard trees because they were spectrally 
and texturally similar. Therefore, prior to eCognition’s image processing, the East 
Bay image from Figure 17.1 was subset by ERDAS IMAGINE 2013 to exclude natural 
forest stands on the western section of the original Figure 17.1 IKONOS image. The 
exclusion of forest regions, which would affect cherry orchard acreage estimation, 
reduced the size of the East Bay image by about 15%. Figure 17.2 gives the outline 
of the IKONOS image that was processed.

Through trial and error, and with a goal to optimize the classification of the 
IKONOS pan-sharpened images at the orchard level, eCognition 9.2’s segmentation 
process was conducted on the East Bay image with the following parameters: scale = 
150, shape = 0.7, and compactness = 0.5. In OBIA, the scale parameter captures the 
relative size of the landscape feature, and the shape parameter focuses on the relative 
shape of the landscape feature, i.e., long rectangular roads versus round cherry tree 
crowns.
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Supervised classification, a nearest neighbor classifier, was then performed 
to divide the segmented image into 12 class categories: (1) grain agriculture; (2) 
buildings and driveways; (3) roads and impervious surfaces; (4) grass; (5) cloud; (6) 
cloud shadow; (7) water; (8) forest, which combines both deciduous and coniferous 
forests; and four categories that include the four density levels of orchard patterns 
(Table 17.1), (9) Cherry_1 sparse, (10) Cherry_2 medium density, (11) Cherry_3 
dense, and (12) Cherry_4 very dense. The Cherry_1 sparse orchard density was 
characterized by orchard stands with dead and very young trees and open soil and 
grassy areas; Cherry_2 medium density had some rows of missing trees, though 
it was approximately 50% full; the Cherry_3 dense orchard category had various 
polygons filled with 75% of the orchard tree rows; and the Cherry_4 very dense 
orchard classification category had mature orchard stands with large crown canopies 
that touched the adjacent orchard tree, and more than 75% of the orchard tree rows 
were covered with orchard trees. Since there were no clouds or cloud shadows in 
this image, these assigned categories (Categories 5 and 6) were eliminated from the 
reference sample categories.

For each classification category, representative sample polygons (i.e., segments) 
were visually identified throughout the image. The eCognition software would ingest 
the data statistics of the sample polygons such as the median multispectral reflectance 
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FIGURE 17.2  eCognition segmented classification with land cover categories.
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values and the standard deviation of the reflectance values. These statistic values were 
then used by the nearest neighbor classifier to assign classification categories to all of 
the remaining polygon objects. After all of the image’s polygon objects were classified, 
the completed object-level classification category names and related data statistics 
were then exported into a raster ERDAS IMG format. Within ERDAS, the accuracy 
assessment module was launched to evaluate the accuracy of the classified image. 
Within the module, 127 stratified random points were generated. Because some of the 
class land cover classification categories, such as roads and buildings, only occupied 
a small area within the classified image, a stratified random reference sampling was 
chosen to better represent the diversity and dominance of the natural land cover types 
(McCoy 2005). All of the random reference points were then visually identified 
and assigned to the land cover categories referred to previously. Then the accuracy 
assessment module generated a report on the producer’s, user’s, and overall accuracy 
between the classified and reference land cover category names (Congalton 1991).

With eCognition, the classified layer was exported out to a shapefile to be processed 
with ArcGIS 10.4, and within ArcGIS the shapefile was dissolved according to the 
land cover name and spatial statistics were generated for display of the estimated 
acreage for each of the classification categories, as well as the various cherry orchard 
density levels. The cherry orchard acreage estimate amounts were then compared 
with the U.S. Department of Agriculture’s 2007 and 2012 Fruits and Nuts reports, 
detailing the acreage amounts of agricultural orchards (Census of Agriculture 2007, 
2012a,b,c). The 2011 cherry orchard acreage estimates were compared with data 
from both censuses because the estimates were not within one of the agricultural 
census years.

TABLE 17.1
Area Estimates for Elk Rapids Region, Antrim County, Michigan

Class Name Pixels Hectares Acres Percentage

Agric 19,186,571 1,918.66 4,741.00 21.62

Buildings 1,008,216 100.82 249.13 1.14

Cherry_1 8,110,962 811.10 2,004.22 9.14

Cherry_2 8,520,242 852.02 2,105.35 9.60

Cherry_3 6,463,879 646.39 1,597.22 7.28

Cherry_4 5,883,904 588.39 1,453.91 6.63

Mixed Forest 28,062,168 2,806.22 6,934.16 31.62

Grass 3,791,744 379.17 936.94 4.27

Roads 973,794 97.38 240.62 1.10

Water 6,760,247 676.02 1,670.46 7.62

Total Estimates 88,761,727 8,876.17 21,933.02 100.00

Buildings = buildings and impervious surfaces; Cherry_1 = sparse low-density cherry orchards; Cherry_2 = 
medium-density cherry orchards; Cherry_3 = dense cherry orchards; Cherry_4 = very dense cherry orchards; 
Agric = grain agriculture and bare soil; Forest = deciduous, coniferous, and mixed forest; Grass = grass and 
golf course greens; and Roads = roads and driveways.
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17.3  RESULTS AND DISCUSSION

17.3.1 R esults

After the image segmentation of the East Bay region using the parameters scale = 150, 
shape = 0.7, and compactness = 0.5, eCognition generated a segment layer with 
14,978 object polygons within the East Bay region. When this segmented image was 
classified and exported to a raster-based shapefile, the estimated percentage of 10 land 
cover types were calculated and displayed in Table 17.1.

When the estimated acreages of the four density levels of cherry orchards were 
added together, their sum totaled 32.65% of this image within the Elk Rapids region 
of Antrim County. This clearly shows the high concentration of cherry orchards in 
this northwestern region of Michigan because nearly 1/3 of this region has cherry 
production, and 13.91% of this area has Cherry_3 dense and Cherry_4 very dense 
cherry orchards.

When the ERDAS IMAGINE 2013 accuracy assessment of the classified image 
was run on the East Bay region image, it produced an overall classification accuracy 
of 74.80%, with a kappa statistic of 0.678 (Table 17.2). Within the Cherry_1 sparse 
orchard category, the user’s accuracy was only 33%. The polygon objects that were 
classified within the Cherry_1 sparse category have a very low percentage of orchard 
trees, and more than 75% of the areas within the polygons had fallow land or dead 
trees. This larger proportion of bare soil or grassy vegetation would be more similar to 
the reflectance characteristics of land devoted to grain agriculture, like corn, oats, or 
rye within Antrim County (Census of Agriculture 2012a,b,c). Since the segmentation 
scale parameter was set to 150, some of the polygon objects were large, and multiple 
land cover and land use types may occur within a large polygon object.

For the Cherry_2 medium-density orchard category, the producer’s accuracy was 
87.5%, though the user’s accuracy was 53.85% (Table 17.2). A close investigation 
disclosed that some polygons were classified as Cherry_2 medium-density orchard, 
but were labeled as the Cherry_3 dense category. Since the polygons can span two 
adjacent orchards, it may be difficult to distinguish a Cherry_2 medium-density 
orchard, having about 50% orchard trees, and the next adjacent category having 75% 
orchard trees in the Cherry_3 dense orchard category. At two additional reference 
points, they were designated forest instead of the Cherry_2 medium-density category.

The Cherry_3 dense category was classified most accurately, with both 77.78% for 
the producer’s and user’s accuracy percentage. This orchard density was most easily 
identifiable because 75% of the polygon objects had orchard trees, and the ratio of 
bare soil or nonorchard vegetation was relatively low. On the other hand, when the 
density of the orchard becomes very dense, within the Cherry_4 very dense category, 
both the user’s and producer’s accuracy were lower at 44.44% (Table 17.2). Very dense 
orchards have often been misclassified as forest since the older, mature cherry orchard 
tree crowns have begun to touch adjacent tree crowns filling up the spaces, and this was 
demonstrated by the continuous leafy canopy from one end of the orchard row to the far 
end. These mature fully crowned orchard trees look very similar to a dense forest stand 
of deciduous trees (see the green forest colored polygon in the middle of Figure 17.3a).

In another misclassification case, the segmentation scale and pattern adversely 
affected the classification. At the eCognition scale factor of 150, larger polygons 

(c) ketabton.com: The Digital Library



368 High Spatial Resolution Remote Sensing

TA
B

LE
 1

7.
2

C
la

ss
ifi

ca
ti

on
, P

ro
du

ce
r’

s 
an

d 
U

se
r’

s 
A

cc
ur

ac
y 

of
 E

lk
 R

ap
id

s 
R

eg
io

n,
 A

nt
ri

m
 C

ou
nt

y,
 M

ic
hi

ga
n

C
la

ss
ifi

ca
ti

on

R
ef

er
en

ce
Pr

od
uc

er
’s 

A
cc

ur
ac

y 
(%

)
U

se
r’s

 
A

cc
ur

ac
y 

(%
)

B
ui

ld
in

gs
C

he
rr

y_
1

C
he

rr
y_

2
C

he
rr

y_
3

C
he

rr
y_

4
Fo

re
st

W
at

er
A

gr
ic

G
ra

ss
R

oa
ds

TO
TA

L

B
ui

ld
in

gs
2

0
0

0
0

0
0

0
0

0
2

66
.6

7
10

0.
00

C
he

rr
y_

1
0

4
0

0
0

2
0

5
0

1
12

10
0.

00
33

.3
3

C
he

rr
y_

2
0

0
7

2
0

2
0

1
0

1
13

87
.5

0
53

.8
5

C
he

rr
y_

3
0

0
0

7
1

1
0

0
0

0
9

77
.7

8
77

.7
8

C
he

rr
y_

4
0

0
0

0
4

4
0

1
0

0
9

44
.4

4
44

.4
4

Fo
re

st
0

0
1

0
3

41
0

0
2

0
47

78
.8

5
87

.2
3

W
at

er
0

0
0

0
0

1
2

0
0

0
3

10
0.

00
66

.6
7

A
gr

ic
0

0
0

0
0

0
0

22
0

1
23

75
.8

6
95

.6
5

G
ra

ss
0

0
0

0
1

1
0

0
5

0
7

71
.4

3
71

.4
3

R
oa

ds
1

0
0

0
0

0
0

0
0

1
2

25
.0

0
50

.0
0

T
O

T
A

L
3

4
8

9
9

52
2

29
7

4
12

7

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 =

 7
4.

80
%

 (
st

ra
tifi

ed
 r

an
do

m
 s

am
pl

in
g)

; o
ve

ra
ll 

ka
pp

a 
st

at
is

tic
s 

=
 0

.6
78

.

(c) ketabton.com: The Digital Library



369Using High Spatial Resol. to Estimate Cherry Orchards

may span multiple land use zones. In a forested suburban road, with many trees 
that were adjacent to a Cherry_2 density category orchard, the eCognition program 
is tricked in classifying it as a Cherry_2 orchard polygon (Figure 17.3b). Visually, 
an experienced researcher would not consider five to six trees lining a street as a 
cherry orchard, but the eCognition program could not make this distinction. Further 
segmenting undersegmented objects at a finer scale could potentially minimize this 
type of misclassification.

Cherry_4_verydense orchards misclassified as forest
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FIGURE 17.3  (a) left is color infrared, and right is an eCognition segmented classification. 
Toward the center of the image is an area of very dense cherry orchards that were misclassified 
as forest. (b) left is color infrared, and right is an eCognition segmented classification. Toward 
the center of the image is an area of roads, lined with trees, that were misclassified as Cherry_2 
medium density.
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17.3.1.1  Cherry Orchard Estimated Acreage Comparisons
For this study, the image analyses focused on the orchard level, but not necessarily 
to distinguish between the various fruit or tree orchard varieties. Therefore, after 
adding the acreage amounts of the four cherry orchard density levels, there was 
a total estimate of 7,160.71 orchard acres. Within this East Bay region of Antrim 
County, even though cherry crop production is the dominant commodity type, other 
row pattern orchards, including apple, plum, and cut Christmas trees, were present. 
The USDA Census of Agriculture also had acreage data for these non-cherry orchard 
types, and the sum of the 2007 census statistics tallied to 1,435 non-cherry acres, or 
19.42% of Antrim County’s orchard acres (Census of Agriculture 2007). Therefore, 
if the acreage estimates for the 2011 cherry orchards utilized the statistics from the 
2007 census (Cherry Industry 2011), this study’s cherry orchard estimate of 7,160.71 
acres would be lowered by 19.42%, down to 5,770.1 acres. When the 5,770.1 estimated 
acres is compared with the 2007 USDA cherry orchard acreage of 5,954.0 acres, there 
is a small, −3.09%, underestimate of the USDA’s calculation (Table 17.3).

However, if the acreage estimates for the 2011 cherry orchards were based on the 
non-cherry orchard statistics from the 2012 census, this study’s 7,160.71 estimated 
acres would be lowered by 15.31%, to an adjusted estimate of 6,064.4 acres. When 
analyzing the adjusted cherry orchard acreage and comparing it with the 2012 
USDA cherry orchard acreage amount of 5,889.0 acres, there is also a small 2.98% 
overestimation of the USDA acreage amount (see “Classified Image” in Table 17.3).

In addition, there are annual fluctuations in cherry production acreage from the 
2007 and 2012 censuses. Various fruit growers may switch to a different crop, or 
choose to leave some acres fallow, or not harvest from low-producing cherry trees. 
The 2011 classification and orchard acreage estimate is one snapshot in time, and can 

TABLE 17.3
Cherry Orchard Acreage Estimate and USDA Comparison for 
Antrim County, Michigan

Class Name Acres

Acres 
Adjusted 
in 2007

2007 USDA 
Acreage 

Dataa

Acres 
Adjusted 
in 2012

2012 USDA 
Acreage 
Datab

Cherry_1 2,004.22 1,615.0 1,697.4

Cherry_2 2,105.35 1,696.5 1,783.0

Cherry_3 1,597.22 1,287.0 1,352.7

Cherry_4 1,453.91 1,171.6 1,231.3

Total Orchard Acre Estimates 7,160.71 5,770.1 6,064.4

USDA Antrim County Cherry Acreage 5,954.0 5,889.0

Percentage Difference from USDA −3.09% 2.98%

a	 Census of Agriculture (2007).
b	 Census of Agriculture (2012c).
Cherry_1 = sparse low-density cherry orchards; Cherry_2 = medium-density cherry orchards; 
Cherry_3 = dense cherry orchards; Cherry_4 = very dense cherry orchards.
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be used in a historical context to guide future cherry growing trends. The full view 
of the 2011 classification for the East Bay area is shown in Figure 17.2.

17.4  CONCLUSION

High spatial resolution imagery combined with OBIAs and techniques have been 
effective in estimating the cherry orchard acreage in the Grand Traverse Bay region 
of Northwest Michigan, and specifically for this case study in Antrim County.

There were some instances that very dense orchard plots were misclassified as 
deciduous forest stands, though the final adjusted cherry orchard acreage estimates 
were remarkably similar and within a ±3.1% error margin of the USDA’s 2007 and 
2012 Census of Agriculture statistics on fruit tree crop acreage.

Since the USDA’s Census of Agriculture is undertaken every 5 years within the 
years ending in numbers 2 and 7, high-resolution imagery acquisition and OBIAs 
can supplement cherry orchard acreage estimates in this fruitful region in years not 
ending in the numbers 2 or 7. Future research should explore spectral signature and 
textural analysis techniques that can distinguish between different orchard tree types 
to improve the classification and acreage estimation of fruit orchards.

On the Census of Agriculture off years, cherry and other fruit growers who want 
to obtain crop acreage and additional monitoring of the orchard fields could employ a 
commercial surveying company to fly UAV drones using multispectral near-infrared 
sensors to obtain relevant high spatial resolution aerial imagery that would better 
inform them regarding fruit crop yield and/or potential diseases that may adversely 
affect their orchard trees. Within this book, you will find innovative uses of UAVs 
and high spatial resolution imagery in many chapters.
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Index

A

Above ground level (AGL), 14, 152
Accuracy of linear spectral unmixing 

(ALSU), 188
Agricultural research, high-resolution UAS 

imagery in, 3–32
autopilot software programs, 17
background, 5–12
continuous wavelet transform, 20
crop assessment and mapping, 18–22
data acquisition flight strategies, 16–17
digital elevation models, 18
digital surface model data, 6
discrete wavelet transform, 20
DNA sequencing technology, 5
flight operations and sensors, 14–16
geometric correction (UAS photogrammetry), 

17–18
geospatial technologies, 10–12
ground-based systems, 7
ground control points, 11
high-throughput phenotyping, 4
image acquisition, 14–17
“Internet-of-things in agriculture,” 9
phenotyping, 5–8
plant breeding, as numbers game, 6
precision agriculture, 4, 8–10
prevailing wind, 16
real-time kinematic differential correction, 9
study area, 12–13
unmanned aerial vehicles, 14
variable-rate technologies, 8
visual flight rules conditions, 14
wavelet analysis, 20
waypoint auto-triggering, 17
waypoint scheduling, 16
weed assessment, 22–25

Airborne data acquisition and registration 
(ADAR), 362

Airborne laser scanning (ALS), 166
ALSU, see Accuracy of linear spectral 

unmixing
Attawapiskat Formation, 326
AVIRIS, 33, 35, 50

B

Bidirectional reflectance distribution function 
(BRDF), 257

Blazing, 40

C

Camera trap data, computer vision methodologies 
for automated processing of, 229–242

animal population monitoring, introduction 
to, 229–230

convolutional neural networks, 232–237
current practices, 230–231
discussion, 239–241
ecological considerations, 239–240
facial and individual recognition, 237–239
Genetic Algorithm for Rule-Set 

Prediction, 232
infamous problem, 238
leave one out, 232
pareidolia, 237
population density modeling, 231–232

Canopy height model (CHM), 166
Carbon storage in urban trees, workflow 

to quantify (using multispectral 
ALS data), 165–185

ALS data processing, 169–170
analysis of ALS-estimated results, 179–181
analysis of carbon storage, 181–182
analysis of multispectral ALS data for land 

cover classification, 174–175
canopy height model, 166
carbon storage modeling, 173–174
dendrometric parameter estimation, 172–173
digital surface model, 169
digital terrain model, 169
methodology, 169–174
pseudo normalized difference water 

index, 171
results and discussion, 174–182
results for local maxima selection, 175–176
study area and data sources, 167–169
validations for ALS-derived dendrometric 

parameters, 176–178
validations for ALS-predicted DBH and tree 

carbon, 178–179
vegetation isolation, 170–172

Charged couple device (CCD), 41
Cherry orchard acreage in Michigan, use of high 

spatial resolution imagery to estimate, 
361–373

airborne data acquisition and registration, 362
cherry orchard estimated acreage 

comparisons, 370–371
methods, 364–366
misclassification case, 367

(c) ketabton.com: The Digital Library



376 Index

Cherry orchard acreage in Michigan, use 
of high spatial resolution imagery 
to estimate  (Continued)

object-based classification, 363
red-green index, 362
results, 367–371
study area, 363–364

Clustering Views for Multi-view Stereo 
(CMVS), 106

Coastal wetland assessment, LiDAR and spectral 
data integration for, 71–88

color infrared imagery, 73
data integration and analysis, 77–79
data sets used, 73
discussion, 81–84
exploratory data analysis, 79–80
“ghost forests,” 71
LiDAR data processing, 74–76
marsh migration, 71
methods, 73–79
normalized difference vegetation 

index, 77
opportunities and challenges, 85
random forest classification, 80–81
results, 79–81
saltwater intrusion, 71
spectral data processing, 76–77
study area, 73
synthetic aperture radar, 73
topographic wetness index, 75

Color infrared (CIR) imagery, 73
Commercial off-the-shelf (COTS) UASs, 16
Complimentary metal-oxide semiconductor 

(CMOS), 41
Computer vision methodologies, see Camera trap 

data, computer vision methodologies 
for automated processing of

Continuous wavelet transform (CWT), 20
Convolutional neural networks (CNNs, 

ConvNets), 232–237
integrating with ecological paradigms, 

234–237
state-of-the-art performance, 233–234
training the neural network, 233

Crop improvement, see Agricultural research, 
high-resolution UAS imagery in

D

De Beers Victor Diamond Mine, 326
Diameter at breast height (DBH), 166
Digital elevation model (DEM), 18, 74–75, 

90, 309
Digital surface model (DSM), 98, 169, 314
Digital terrain model (DTM), 169, 293
Discrete wavelet transform (DWT), 20
Dwell time, 54

E

Earth surface reconstruction, see 3D earth 
surface reconstruction, multiview 
image matching for

Epipolar line, 95

F

Fast line-of-sight atmospheric analysis of spectral 
hypercubes (FLAASH) algorithms, 67

Federal Aviation Administration (FAA), 14, 151
Fiberoptic gyroscopes (FOGs), 59
Field of view (FOV), 42, 45, 50
Fine-scale urban imagery, see Linear spectral 

unmixing of fine-scale urban imagery, 
suitable spectral mixing space 
selection for

Fixed-wing UAVs, 63–65
Fractal net evolution approach (FNEA), 294
Fraction vegetation cover (FVC) extraction using 

high spatial resolution imagery in 
karst areas, 347–359

data and methods, 351–354
discussion, 354–357
karst rocky desertification, 347
linear spectral mixture analysis, 348
multiple end-member spectral mixture 

analysis, 349
normalized difference vegetation index, 348
results, 354
study area, 350–351
Sun-Canopy-Sensor model, 349
Universal Transverse Mercator map 

projection, 351
unmanned aerial systems, 354

Full width at half maximum (FWHM), 67

G

Genetic Algorithm for Rule-Set Prediction 
(GARP), 232

Geographic information system (GIS), 4, 29
Geographic object-based image analysis 

(GEOBIA), segmentation scale 
selection in, 201–228

discussion, 223–224
factors influencing scale selection, 203–205
future directions, 225
global score, 208–210
latest advances of presegmentation scale 

estimation, 219–223
local variance, 207–208
multiresolution segmentation, 202
oversegmentation, 202
postsegmentation scale selections, 205–219
scale issues, 201–203
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study area and experimental data, 205
supervised scale selection, 210–219
terminology, 205
undersegmentation, 203
unsupervised scale selection, 206–210

GIFOV, see Ground IFOV
Global Navigation Satellite System (GNSS), 8
Global positioning system (GPS)

acceleration data, 59
agricultural research, 4
case study, 137
navigational data recorded via, 55
real-time kinematic, 323
SfM data and, 150
Trimble Juno receiver, 364

Google Earth, 168
Grassland biophysical and biochemical 

properties, UAV-based multispectral 
images for investigating, 245–259

challenges and future work with UAV 
applications, 257

field investigation, 248–249
geometric correction, 251
image orthorectification and mosaic, 251
image quality evaluation and process, 249–251
imagery process, 249–252
investigating grassland properties using UAV, 

246–255
project summary, 256–257
radiometric calibration, 251
study area, 247
UAV-based remote sensing, introduction to, 

245–246
UAV flight designs and image processing, 257
UAV system, sensor, and image acquisition, 

247–248
vegetation properties estimation and analysis, 

253–255
Grassland leaf chlorophyll, inversion of a radiative 

transfer model using hyperspectral data 
for deriving, 261–282

chlorophyll measurements, 265
discussion, 274–276
field data, 264
field spectroradiometric measurements, 

264–265
leaf area index, 262
lookup table methods, 263
LUT inversion, 268–269
methods, 263–272
model inversion for leaf chlorophyll content 

retrieval, 265–267
parameterizing the LUT, 271–272
PROSPECT model, 266, 277
radiative transfer models, 262
results, 272–274
SAILH canopy model, 267, 276

scenes evaluated using the SLC model, 268
sensitivity analysis, 269–271
Soil-Leaf-Canopy model, 263, 265
spectral vegetation indices, 262
study area, 263–264

Grid cells, 95
Ground control points (GCPs), 11, 93, 150
Ground IFOV (GIFOV), 52

H

Headwall photonics hyperspectral series, 40
Hierarchical image matching, 105
High-resolution radar data processing and 

applications, 119–145
basic SAR image processing, 125–131
case studies, 136–143
COSMO-SkyMed, 134–135
digital elevation model, 132
image classification and segmentation, 130–131
infrastructure (case study), 139–143
invasive species in grasslands (case study), 

136–139
multilooking and speckle reduction, 125–127
polarimetric parameters and target 

decomposition theorems, 127–129
RADARSAT-2, 132
satellite systems, 131–135
Sentinel-1, 133–134
support vector machine, 131
synthetic aperture radar, fundamentals of, 

119–125
TerraSAR-X/TanDEM-X, 132

High-throughput phenotyping (HTP), 4
Hyperspectral UAV, see UAV-hyperspectral 

system, building of (hyperspectral 
sensor considerations and data 
preprocessing); UAV-hyperspectral 
system, building of (UAV and sensor 
considerations)

I

IKONOS satellite, 220, 286, 362
ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC), 233
Inertial measurement unit (IMU), 18, 59
InGaAS arrays, 41
Instantaneous field of view (IFOV), 51
“Internet-of-things in agriculture,” 9

K

Karst rocky desertification (KRD), 347; see also 
Fraction vegetation cover extraction 
using high spatial resolution imagery 
in karst areas
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Keystone effects, 45
Kolmogorov-Smirnov (KS) test, 78

L

Landsat Thematic Mapper, 348
Leaf area index (LAI), 246, 262
Least-square matching (LSM) refinement, 104
LiDAR, see Coastal wetland assessment, LiDAR 

and spectral data integration for; 
Wetland ecosystems, geomorphic and 
biophysical characterization of (with 
airborne LiDAR)

Linear spectral mixture analysis (LSMA), 348
Linear spectral unmixing of fine-scale urban 

imagery, suitable spectral mixing 
space selection for, 187–200

accuracy of linear spectral unmixing, 188
discussion, 195–198
experimental results, 191–195
experiments, 191–195
linear spectral unmixing, 188–190
methods, 188–191
ORD, 190
outlier distance, 190
pixel cloud, 192
quantifying the structure of the scatterplot 

triangle, 190–191
study site and experimental data set, 191

Line scanning, 36
Lithium polymer (LiPo) batteries, 257
Lookup table (LUT), 263
LSM refinement, see Least-square matching 

refinement

M

Markov random field (MRF), 98
Medium-density fiberboard (MDF), 151
Microelectromechanical system (MEMS) 

accelerometers, 59
Motion techniques, see Wood chip volume, 

structure from motion techniques for 
estimating

Multiple end-member spectral mixture analysis 
(MESMA), 349

Multiresolution segmentation (MRS), 202
Multirotor UAVs, 62–63
Multispectral ALS data, see Carbon storage in 

urban trees, workflow to quantify 
(using multispectral ALS data)

N

National Agriculture Imagery Program (NAIP), 
73, 363

National Wetlands Inventory (NWI), 73, 78

Near-infrared (NIR) region, 38, 41, 262
Normalized difference vegetation index (NDVI), 

77, 289, 348
Normalized digital surface model (nDSM), 166

O

Object-based classification (OBC), 363
Object-based image analyses (OBIAs), 363
Offner-type spectrometers, 41
Outlier distance (OD), 190
Oversegmentation, 202

P

Pareidolia, 237
Patch-based Multi-View Stereo (PMVS), 101
Photo detection and ranging (PhoDAR), 150
Point spread function (PSF), 45, 52
PROSPECT model, 266, 277
Pseudo normalized difference water index 

(pNDWI), 171
Pushbroom hyperspectral, 38–41

Q

Quantum efficiency (QE), 42
Quick atmospheric correction (QUAC), 67
QuickBird, 73, 220, 362

R

Radar data processing and applications, see 
High-resolution radar data processing 
and applications

Radiative transfer models (RTMs), 262; see also 
Grassland leaf chlorophyll, inversion 
of a radiative transfer model using 
hyperspectral data for deriving

Random forest (RF), 210
Rate of change (ROC), 207
Rational function model (RFM), 92
Real-time kinematic (RTK) differential 

correction, 9
Real-time kinematic (RTK) GPS, 323
Red-green index (RGI), 362
RGB camera, 68
Root-mean-squared error (RMSE), 18, 176, 

293, 323
RTMs, see Radiative transfer models

S

SAGA wetness index (SWI), 329
SAILH canopy model, 267, 276
SAR, see Synthetic aperture radar
Satellite systems, 131–135
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COSMO-SkyMed, 134–135
RADARSAT-2, 132
Sentinel-1, 133–134
TerraSAR-X/TanDEM-X, 132

Segmentation scale selection, see Geographic 
object-based image analysis, 
segmentation scale selection in

Semi-global matching (SGM), 106
Shiftable self-adaptive line cross-correlation 

(SSLCC) method, 101
Short-wave infrared (SWIR) channel, 167
Short-wave infrared (SWIR) detector, 38
Smile effects, 45
Soil-Leaf-Canopy (SLC) model, 263
Spatial scanning, 36
Special Flight Operations Certificate (SFOC), 66
Spectral data integration, see Coastal wetland 

assessment, LiDAR and spectral data 
integration for

Spectral vegetation indices (SVIs), 262
Structure from motion (SfM), 150, 308; see also 

Wood chip volume, structure from 
motion techniques for estimating

Sun-Canopy-Sensor (SCS) model, 349
Support vector machine (SVM), 131, 296
Synthetic aperture radar (SAR), 73
Synthetic aperture radar (SAR), fundamentals 

of, 119–125; see also High-resolution 
radar data processing and applications

aperture synthesis and image formation, 
121–122

basic terminology and electromagnetics, 
120–121

coherent and incoherent scattering, 122–123
polarimetry, 124–125
speckle, 123
texture, 123

Synthetic aperture radar (SAR), image 
processing, 125–131

image classification and segmentation, 
130–131

multilooking and speckle reduction, 125–127
polarimetric parameters and target 

decomposition theorems, 127–129
System for Automated Geoscientific Analysis 

(SAGA) GIS program, 329

T

TDR, see Time domain reflectometer
3D earth surface reconstruction, multiview image 

matching for, 89–117
accuracy assessment, 110–111
accuracy of multi-image matching methods, 

107–108
advanced techniques to refine and accelerate 

multi-image matching, 98–105

broader discussion and new trends, 108–111
candidate search, 93–95
challenges, limitations, and opportunities, 

110–111
Clustering Views for Multi-view Stereo, 106
computation efficiency, 110
digital elevation model, 90
digital surface model, 98
efficiency and robustness, 108
energy minimization, 104–105
epipolar geometry, 109
epipolar line, 95
frame image, 108
frame sensors versus linear array sensors, 

108–109
fundamental framework, 91–98
global optimization, 103–105
grid cells, 95
ground control points, 93
image orientation, 91–93
least-square matching refinement, 104
Markov random field, 98
matching primitives, 99–101
multicandidate optimization, 103–104
multi-image matching software, 106
multiscale matching strategies, 105
multisensor and multisource image matching, 

109–110
multisource image matching, 111
parameter adjustment, 101–103
Patch-based Multi-View Stereo, 101
rational function model, 92
reference image, 101–102
shiftable self-adaptive line cross-correlation 

method, 101
similarity measures, 95–97
software, accuracy, and efficiency, 106–108
3D reconstruction, 97–98
threshold of successful matching similarity, 

102–103
triangular irregular network, 90
unmanned aerial vehicle surveys, 90
visibility determination and occlusions, 99

Time domain reflectometer (TDR), 329
Topographic wetness index (TWI), 75
Triangular irregular network (TIN), 90

U

UAV, see Unmanned aerial vehicle
UAV-hyperspectral system, building of 

(hyperspectral sensor considerations 
and data preprocessing), 49–69

advanced quadcopter systems, 63
components of hyperspectral UAV, 56–59
data processing and storage, 60
dwell time, 54
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UAV-hyperspectral system, building of 
(hyperspectral sensor considerations 
and data preprocessing)  (Continued)

fiberoptic gyroscopes, 59
fixed-wing UAVs, 63–65
global positioning systems, 55
ground IFOV, 52
inertial measurement unit, 59
instantaneous field of view, 51
microelectromechanical system 

accelerometers, 59
multirotor UAVs, 62–63
point spread function, 52
postcollection processing to reflectance, 

66–67
relationship between sensor and UAV, 50–56
RGB camera, 68
software packages, 67
special flight operations certificate insurance, 

65–66
technical considerations, 49–50
UAV craft selection, 60–65
unbalanced systems, 63

UAV-hyperspectral system, building of (UAV and 
sensor considerations), 33–48

adoption of hyperspectral unmanned aerial 
vehicles, 34–35

airborne surveying companies, 34
AVIRIS, 33, 35
blazing, 40
charged couple device, 41
complimentary metal-oxide semiconductor, 41
detector array, 41–44
diffraction grating, 40
field of view, 42, 45
hyperspectral imager manufacturers, partial 

list of, 39
hyperspectral imagery availability, 33–34
hyperspectral imaging for UAVs, 35–45
hyperspectral sensor performance metrics, 

44–45
InGaAS arrays, 41
keystone effects, 45
line scanning, 36
mobilization costs, 34
nonscanning spectrometers, 38
point spread function, 45
pushbroom hyperspectral, 38–41
quantum efficiency, 42
short-wave infrared detector, 38
smile effects, 45
spatial scanning, 36
splitting techniques (imagers), 36
transmissive optics, 39
vignetting effect, 45
visible near-infrared detector, 38, 42

Ultraviolet (UV) regions, 42

Undersegmentation, 203
Universal Transverse Mercator (UTM) map 

projection, 351
Unmanned aerial systems (UASs), 4, 149, 354

agricultural research, see Agricultural 
research, high-resolution UAS 
imagery in

commercial off-the-shelf, 16
photogrammetry, 17–18

Unmanned aerial vehicle (UAV), 14; see 
also Grassland biophysical and 
biochemical properties, UAV-
based multispectral images for 
investigating; UAV-hyperspectral 
system, building of (hyperspectral 
sensor considerations and data 
preprocessing); UAV-hyperspectral 
system, building of (UAV and sensor 
considerations)

craft selection, 60–65
fixed-wing, 63–65
multirotor, 62–63
surveys, 90

V

Variable-rate technologies (VRTs), 8
Vegetation cover extraction, see Fraction 

vegetation cover extraction using 
high spatial resolution imagery in 
karst areas

Very-high-resolution (VHR) images, 201, 296
Vignetting effect, 45
Visible near-infrared (VNIR) detector, 38, 

42, 292
Visual flight rules (VFR) conditions, 14
Volumetric soil moisture (VSM), 329
VRTs, see Variable-rate technologies

W

Wetland detection using high spatial resolution 
optical remote sensing imagery, 
283–305

brief history of wetland remote sensing 
applications, 286–288

case study, 289–296
challenges and considerations, 284–285
classification approach, 299–300
classification method, 293–296
classification results, 297
digital terrain model, 293
discussion, 299–301
fractal net evolution approach, 294
high spatial resolution imagery in wetland 

remote sensing, 288–289
image preprocessing, 292–293
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input layers, 293–294
multiresolution segmentation, 294–295
normalized difference vegetation index, 289
satellite considerations, 299
satellite data, 290–291
seasonal change, 300–301
segmentation results, 296–297
study area, 290
threatened species, 290
variety of wetlands, 285

Wetland ecosystems, geomorphic and biophysical 
characterization of (with airborne 
LiDAR), 307–345

accuracy of LiDAR-derived vegetation 
parameters, 324–325

accuracy of LiDAR ground surface 
topography and vegetation indices in 
wetland environments, 322–325

applications, 315–322
case study, 325–340
digital terrain analyses and soil moisture 

model results, 334–340
digital terrain analysis and soil moisture 

models, 329–331
discrete return airborne LiDAR in vegetated 

environments, 309–315
hydrologic and geomorphic analysis of 

wetlands, 319–321
interpolated products, 314
LiDAR acquisition, 327
LiDAR data products, derivatives, and their 

applications in wetland science and 
management, 309–322

LiDAR ground return elevation accuracy 
assessment, 331–333

LiDAR ground surface elevation error in 
wetland environments, 323–324

methods, 327–331
original data and classified point clouds, 

310–314
peatland morphology examples, 333–334
results and discussion, 331–340
SAGA wetness index, 329
soil moisture surveys, 329
study site and objectives, 325–327
topographic, geomorphometric, and 

hydrologic derivatives, 314
topographic profiles, 329
topographic surveying and accuracy 

assessment, 327–328
vegetation derivatives, 314–315
wetland ecosystem classification and 

detection, 315–319
wetland vegetation analysis, 321–322

Wood chip volume, structure from motion (SfM) 
techniques for estimating, 149–164

discussion, 159–161
Federal Aviation Administration line of sight 

regulations, 151
ground control points, 150
limitations and future research, 162–163
medium-density fiberboard, 151
methods, 151–158
photo acquisition, 152–154
photo detection and ranging, 150
results, 158–159
SfM program costs, 156
study area, 151
UAS imagery processing, 155–158
UAS logistics, 151–152
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