We now look at the functionality of the different form widgets in detail, looking at what
options are available to collect different types of data. This guide is somewhat
exhaustive, covering all of the available native form widgets.

Prerequisites: Basic computer literacy, and a basic understanding of HTML.

Objective: To understand what types of native form widget are available in brow
collecting data, and how to implement them using HTML.

Here we will focus on the form widgets built in to browsers, but because
HTML forms remain quite limited and the quality of the implementations can
be very different from one browser to another, web developers sometimes
build their own form widgets — see How to build custom form widgets later in the
module for more ideas about this.

Note: Most of the features discussed in this article have wide support across browsers;
we'll note exceptions to this. If you want more exact details, you should consult

our HTML forms element reference, and in particular our extensive <input>

types reference.

Common attributes

Many of the elements used to define form widgets have some of their own
attribute s..However, there ic a <et of attrihutes comman te 3!l form elements
that give you >uime coni'a o'e thosevidyets Herzis a list cf those common
attributes:

Attribute name Default value Description

This Boolean attribute lets you specify that the eleme
input focus when the page loads, unless the user ove

tof . . .
autorocts (false) in a different control. Only one form-associated elem
attribute specified.
: This Boolean attribute indicates that the user cannot
disabled (false)

attribute is not specified, the element inherits its setti

(c) ketabton.com: The Digital Library

Attribute name Default value Description

for example, <fieldset>; if there is no containing element
then the element is enabled.

The form element that the widget is associated with. Th
be the id attribute of a <form> element in the same docur

form . . .
a form widget outside of a <form>element. In practice, hc
which supports that feature.
name The name of the element; this is submitted with the forn
value The element's initial value.
Text input fields

Text <input> fields are the most basic form widgets. They are a very
convenient way to let the user enter any kind of data. However, some text
fields can be specialized to achieve particular needs. We've already seen a
few simple examples

Note: HTML form text fields are simple plain text input controls. This means that you
cannot use them to perform rich editing (bold, italic, etc.). All rich text editors you'll
encounter out there are custom widgets created with HTML, CSS, and JavaScript.

All text fields share some common behaviors:

« They can be marked as readonly (the user cannot modify the input value) or
even disabled (the input value is never sent with the rest of the form data).

« They can have a piaceholder; this is text that appears inside the text input box
that describes the purpose of the box briefly.

« They can be constrained in size (the physical size of the box) and length (the
maximum number of characters that can be entered into the box).

« They can benefit from spell checking, if the browser supports it.
Note: The <input> element is special because it can be almost anything. By simply
setting its type attribute, it can change radically, and it is used for creating most types of
form widget including single line text fields, controls without text input, time and date
controls, and buttons. However, there are some exceptions, like <textarea> for multi-line
inputs. Take careful note of these as you read the article.

(c) ketabton.com: The Digital Library

Single line text fields

A single line text field is created using an <input> element whose type attribute
value is set to text (also, if you don't provide the type attribute, text is the
default value). The value text for this attribute is also the fallback value if the
value you specify for the typeattribute is unknown by the browser (for example
If you specify type="date" and the browser doesn't support native date pickers).
Note: You can find examples of all the single line text field types on GitHub at single-
line-text-fields.html (see it live also).

Here is a basic single line text field example:

<input type="text" id="comment" name="comment" value="I'm a text field">

Single line text fields have only one true constraint: if you type text with line
breaks, the browser removes those line breaks before sending the data.

HTML5 enhances the basic single line text field by adding special values for
the typeattribute. Those values still turn an <input> element into a single line
text field but they add a few extra constraints and features to the field.

E-mail address field

This type of field is set with the value emai1 for the type attribute:

<input type="email" id="email" name="email" multiple>

When this type is used, the user is required to type a valid e-mail address into
the field; any other content causes the browser to display an error when the
form is submitted. Note that this is client-side error validation, performed by
the browser:

It's also possible to let the user type several e-mail addresses into the same
input (separated by commas) by including the muitipie attribute.

On some devices (especially on mobile), a different virtual keypad might be
presented that is more suitable for entering email addresses.

Note: You can find out more about form validation in the article Form data validation.

(c) ketabton.com: The Digital Library

Password field

This type of field is set using the value password for the type attribute:

<input type="password" id="pwd" name="pwd">

It doesn't add any special constraints to the entered text, but it does obscure
the value entered into the field (e.g. with dots or asterisks) so it can't be read
by others.

Keep in mind this is just a user interface feature; unless you submit your form
securely, it will get sent in plain text, which is bad for security — a malicious
party could intercept your data and steal passwords, credit card details, or
whatever else you've submitted. The best way to protect users from this is to
host any pages involving forms over a secure connection (i.e. at an https:// ...
address), so the data is encrypted before it is sent.

Modern browsers recognize the security implications of sending form data
over an insecure connection, and have implemented warnings to deter users
from using insecure forms. For more information on what Firefox implements,
see Insecure passwords.

Search field

This type of field is set by using the value search for the type attribute:

<input type="search" id="search" name="search">

The main difference between a text field and a search field is how the browser
styles it — often, search fields are rendered with rounded corners, and/or
given an "X" to press to clear the entered value. However, there is another
added feature worth noting: their values can be automatically saved to be auto

completed across multiple pages on the same site.

(c) ketabton.com: The Digital Library

Default Focus Disabled
Firefox (WinT7) I'm a search field I'm a search field| I'm a search field
Chrome (WinT) I'm a search field *x :I'm a search field| ® I'm a search field
Opera (Win7) I'm a search field I'm a search field| I'm a search field
Chrome (Mac O5X) " I'm a search field © { I'm a search field ©} I'm a search field
Opera (Mac O5X) I'm a search field Y 'masearch field| Y ('masearch field

Phone number field

This type of field is set using te1 as the value of the type attribute:

<input type="tel" id="tel" name="tel">

Due to the wide variety of phone number formats around the world, this type
of field does not enforce any constraints on the value entered by a user (this
can include letters, etc.). This is primarily a semantic difference, although on
some devices (especially on mobile), a different virtual keypad might be
presented that is more suitable for entering phone numbers.

URL field

This type of field is set using the value ur1 for the type attribute:

<input type="url" id="url" name="url">

It adds special validation constraints to the field, with the browser reporting an
error if invalid URLs are entered.

Note: Just because the URL is well-formed doesn't necessarily mean that it refers to a
location that actually exists.

Note: Fields that have special constraints and are in error prevent the form from being
sent; in addition, they can be styled so as to make the error clear. We will discuss this in
detail in the article: Data form validation.

Multi-line text fields|

(c) ketabton.com: The Digital Library

A multi-line text field is specified using a <textarea> element, rather than using
the <input> element.

<textarea cols="30" rows="10"></textarea>

The main difference between a textarea and a regular single line text field is
that users are allowed to type text that includes hard line breaks (i.e. pressing

return).
Default Focus Disabled
I'm a multi-lines I'm a malti-lines I'm a multi-lines
text field text fieldl text field
Firefox (WinT)
I'm a multi-line=s text I'm a multi-line=s text I'm a multi-lines tex
Chrome (Win7) field P fieldl L field
I'm a multi-lines - I'm a malti-lines - I'm a multi-lines
IE {'..f"..-{.'n?_,l text field - Lext fieldl - text field
I'm a multi=lines I'm a multi=-lines I'm a multi=-lines
text field text field| text field
Firefox (Mac OSX)
- |I'm a multi-lines text field I'm a multi-lines text field| I'm a multi-lines text field
Chrome (Mac O5X) P P P

Note: You can find an example of a multi-line text field on GitHub at multi-line-text-
field.html (see it live also). Have a look at it, and notice how in most browsers, the text
area is given a drag handle on the bottom right to allow the user to resize it. This
resizing ability can be turned off by setting the text area's resize property

to none using CSS.

<textarea> alSO accepts a few extra attributes to control its rendering across
several lines (in addition to several others):

Attributes for the <textarea> element
Attribute name Default value Description

cols 20 The visible width of the text control, in average ch:

rows The number of visible text lines for the control.

wra soft Indicates how the control wraps text. Possible valt

(c) ketabton.com: The Digital Library

Note that the <textarea> element is written a bit differently from

the <input> element. The <input> element is an empty element, which means
that it cannot contain any child elements. On the other hand,

the <textarea> element is a regular element that can contain text content
children.

There are two key related points to note here:

« If you want to define a default value for an <input> element, you have to use
the value attribute; for a <textarea> element on the other hand you put the
default text between the starting tag and the closing tag of the <textareas.

o Because of its nature, the <textarea> element only accepts text content; this
means that any HTML content put inside a <textareas> IS rendered as if it was
plain text content.

Drop-down content

Drop-down widgets are a simple way to let users select one of many options
without taking up much space in the user interface. HTML has two forms of
drop down content: the select box, and autocomplete box. In both cases the
interaction is the same — once the control is activated, the browser displays a
list of values the user can select between.

Note: You can find examples of all the drop-down box types on GitHub at drop-down-
content.html (see it live also).

A select box is created with a <select> element with one or
more <option> elements as its children, each of which specifies one of its
possible values.

<select id="simple" name="simple">
<option>Banana</option>
<option>Cherry</option>
<option>Lemon</option>

</select>

If required, the default value for the select box can be set using

the selected attribute on the desired <option> element — this option is then
preselected when the page loads. The <option> elements can also be nested
inside <optgroup> elements to create visually associated groups of values:

(c) ketabton.com: The Digital Library

<select id="groups" name="groups">

<optgroup label="fruits">
<option>Banana</option>
<option selected>Cherry</option>
<option>Lemon</option>

</optgroup>

<optgroup label="vegetables">
<option>Carrot</option>
<option>Eggplant</option>
<option>Potato</option>

</optgroup>
</select>

Default Focus Open Dis:
I'm a select box - I'm a select box v I'm a select box v | I'm

I'm group of option

Cl
And this is an option
Firefox (Win7) And another option

|I'm a select box El |I'm a select box EI I'm a select box - E

I'm group of option
And this is an option
Chrome (Win7) And another option

'I'm a select box EARE '™ a select box (»| |I'm a select box - I'm

I'm group of option
I'm a select box
And this is an option
And another option

IE (Win7)

I'm a select box - I'm a select box -

I'm a select box

I'm group of option

And this is an option

Opera (Win7) And another option

[I'm a select box I-#-] [I'm a select box I-G-] [I'm a select box H I'r
I'm a group of options

I'm a select box
And this is an option
Firefox (Mac OSX) And another option

I'm a group of options

[I'm a select box |.$.] [I'm a select box I.;,] " I'm a select box 'n
And this is an option

Chrome (Mac OSX) And another option

(c) ketabton.com: The Digital Library

If an <option> element is set with a value attribute, that attribute's value is sent
when the form is submitted. If the va1ue attribute is omitted, the content of
the <option>element is used as the select box's value.

On the <optgroup> element, the 1abe1 attribute is displayed before the values,
but even if it looks somewhat like an option, it is not selectable.

Multiple choice select bo

By default, a select box only lets the user select a single value. By adding
the multipleattribute to the <select> element, you can allow users to select
several values, by using the default mechanism provided by the operating
system (e.g. holding down cmd/ ctrland clicking multiple values).

Note: In the case of multiple choice select boxes, the select box no longer

displays the values as drop-down content — instead, they are all displayed at
once in a list.

<select multiple id="multi" name="multi">
<option>Banana</option>
<option>Cherry</option>
<option>Lemon</option>

</select>

(c) ketabton.com: The Digital Library

Firefox (Win7)

Chrome (Win7)

Opera (Win7)

IE (Win7)

Firefox (Mac OSX)

Chrome (Mac OSX)

Default

Focls

I'm group of option
I'm a select box
And this is an option
And another option

13

4

I'm group of opfion
I'm a select box
And this is an option
And another option

»

. |

I'm group of option
I'm a select box
And this is an option
And another option

13

I'm group of option
I'm a select box
And this is an option
And another option

I'm group of option
I'm a select box
And this is an option
And another option

3

I'm group of option

I'm a select box

And this is an option
And another option

I'm group of option
I'm a select box
And this is an option
And another option

-

-

I'm group of option

I'm a select box

And this is an option
And another option

m| »

1

I'm a group of options
I'm a select box
And this is an option
And another option

I'm a group of options
I'm a select box
And this is an option
And another option

I'm a group of options

{ I'm a select box]
And this is an option
And anather option

I'm a group of options
I'm a select box
And this is an option
And another opticn

Disabled

I'm group of opfion
I'm a select box
And this is an option
And another option

»

4

I'm group of option
I'm a select box
And this is an option
And another option

13

|

I'm group of option
I'm a select box
And this is an option
And another option

I'm group of option

I'm a group of options
I'm a select box
And this is an option
And another option

I'm a group of options
I'm a select box
And this is an option
And another option

Note: All browsers that support the <select> element also support the multipleattribute

on it.

Autocomplete bo

You can provide suggested, automatically-completed values for form widgets
using the <datalist> element with some child <option> elements to specify the

values to display.

The data list is then bound to a text field (usually an <input> element) using

the 1istattribute.

Once a data list is affiliated with a form widget, its options are used to auto-
complete text entered by the user; typically, this is presented to the user as a
drop-down box listing possible matches for what they've typed into the input.

<label for="myFruit">What's your favorite fruit?</label>

(c) ketabton.com: The Digital Library

<input type="text" name="myFruit" id="myFruit" list="mySuggestion">

<datalist id="mySuggestion">
<option>Apple</option>
<option>Banana</option>
<option>Blackberry</option>
<option>Blueberry</option>
<option>Lemon</option>
<option>Lychee</option>
<option>Peach</option>
<option>Pear</option>

</datalist>

Note: According to the HTML specification, the 1ist attribute and

the <datalist> element can be used with any kind of widget requiring a user input.
However, it is unclear how it should work with controls other than text (color or date
for example), and different browsers behave differently from case to case. Because of
that, be cautious using this feature with anything but text fields.

Windows 7 Mac OS
I'm a datalist content I'm a datalist content
And this is an option And this is an option
Firefox And another option And another option

I'm a datalist content I'm a datalist content

And this is an option

Chrome And another aption

And this is an option

And another option

I'm a datalist content
And this is an option
And another option

I'm a datalist content
And this is an option
Opera And another option

Datalist support and fallbacks

The <datalist> element is a very recent addition to HTML forms, so browser
support is a bit more limited than what we saw earlier. Most notably, it isn't
supported in IE versions below 10, and Safari still doesn't support it at the time
of writing.

(c) ketabton.com: The Digital Library

To handle this, here is a little trick to provide a nice fallback for those
browsers:

<label for="myFruit">What is your favorite fruit? (With fallback)</label>
<input type="text" id="myFruit" name="fruit" list="fruitList">

<datalist id="fruitList">
<label for="suggestion">or pick a fruit</label>
<select id="suggestion" name="altFruit">
<option>Apple</option>
<option>Banana</option>
<option>Blackberry</option>
<option>Blueberry</option>
<option>Lemon</option>
<option>Lychee</option>
<option>Peach</option>
<option>Pear</option>
</select>
</datalist>

Browsers that support the «datalist> element will ignore all the elements that
are not <option> elements and will work as expected. On the other hand,
browsers that do not support the <datalist> element will display the label and
the select box. Of course, there are other ways to handle the lack of support
for the <datalist> element, but this is the simplest (others tend to require

JavaScript).
Safari 6 ‘What is vour favorite fruit? or pick a fruit | Banana | :3
What is your favorite fruit? |
. Banama
Firefox 18 Cherry
Strawberry
Checkable items

Checkable items are widgets whose state you can change by clicking on
them. There are two kinds of checkable item: the check box and the radio

(c) ketabton.com: The Digital Library

button. Both use the checkedattribute to indicate whether the widget is checked
by default or not.

It's worth noting that these widgets do not behave exactly like other form
widgets. For most form widgets, once the form is submitted all widgets that
have a name attribute are sent, even if no value has been filled out. In the case
of checkable items, their values are sent only if they are checked. If they are
not checked, nothing is sent, not even their name.

Note: You can find the examples from this section on GitHub as checkable-

items.html (see it live also).

For maximum usability/accessibility, you are advised to surround each list of
related items in a <fieldset>, With @ <legend> providing an overall description of
the list. Each individual pair of <1abel>/<input> elements should be contained in
its own list item (or similar). This is shown in the examples.

You also need to provide values for these kinds of inputs inside

the value attribute if you want them to be meaningful — if no value is provided,
check boxes and radio buttons are given a value of on.

A check box is created using the <input> element with its type attribute set to
the value checkbox.

<input type="checkbox" checked id="carrots" name="carrots" value="carrots">

Including the checked attribute makes the checkbox checked automatically
when the page loads.

Default Focus Disabled

=l

Firefox (Win7)

Chrome (Win7)

o o O
=l
O
=

=
0
=

IE (Win7)

Tl

O
(=
C
=

Chrome (Mac OSX)

A radio button is created using the <input> element with its type attribute set to
the value radio.

<input type="radio" checked id="soup" name="meal">

(c) ketabton.com: The Digital Library

Several radio buttons can be tied together. If they share the same value for
their nameattribute, they will be considered to be in the same group of buttons.
Only one button in a given group may be checked at the same time; this
means that when one of them is checked all the others automatically get
unchecked. When the form is sent, only the value of the checked radio button
Is sent. If none of them are checked, the whole pool of radio buttons is
considered to be in an unknown state and no value is sent with the form.

<fieldset>
<legend>What is your favorite meal?</legend>

<1li>
<label for="soup">Soup</label>
<input type="radio" checked id="soup" name="meal" value="soup">
</1i>
<1li>
<label for="curry">Curry</label>
<input type="radio" id="curry" name="meal" value="curry">
</1i>
<1li>
<label for="pizza">Pizza</label>
<input type="radio" id="pizza" name="meal" value="pizza">

</1li>

</fieldset>
Default Focus Disabled
Firefox (Win7) © @) @
Chrome (Win7) o @ 0 @ @
IE (WinT7) o @ @

Chrome (Mac 0OSX) O @ 0e

Buttons
Within HTML forms, there are three kinds of button:

Submit

(c) ketabton.com: The Digital Library

Sends the form data to the server.

Reset
Resets all form widgets to their default values.

Anonymous
Buttons that have no automatic effect but can be customized using
JavaScript code. If you omit the type attribute, this is the default value.
Note: You can find the examples from this section on GitHub as button-
examples.html (see it live also).

A button is created using a <button> element or an <input> element. It's the
value of the type attribute that specifies what kind of button is displayed:

<button type="submit">
This a
submit button
</button>

<input type="submit" value="This is a submit button">

s

<button type="reset">
This a
reset button
</button>

<input type="reset" value="This is a reset button">

B 01y mous

<button type="button">
This an
anonymous button
</button>

<input type="button" value="This is an anonymous button">

Buttons always behave the same whether you use a <button> element or
an <input>element. There are, however, some notable differences:

« As you can see from the examples, <button> elements let you use HTML
content in their labels, which are inserted inside the opening and
closing <button> tags. <input> elements on the other hand are empty elements;
their labels are inserted inside value attributes, and therefore only accept plain
text content.

(c) ketabton.com: The Digital Library

« With <button> elements, it's possible to have a value different than the button's
label (by setting it inside a value attribute). This isn't reliable in versions of
Internet Explorer prior to IE 8.

Default Focus Disabled
Firefox (Win7) [I'm a button] [‘I'm a button:] I'm a button
Chrome (Win7) [I'm a button] [I'm a huttnn] I'm a button
IE (Win7) | 'mabution | [FFmabution | | ' 2 bution
Firefox (Mac O5X) m (m) I'm a button
Chrome (Mac OSX) ('m a button) (m I'm a button

Technically speaking, there is almost no difference between a button defined
with the <button> element or the <input> element. The only noticeable difference
is the label of the button itself. Within an <input> element, the label can only be
character data, whereas in a <button> element, the label can be HTML, so it
can be styled accordingly.

Advanced form widgets

In this section we cover those widgets that let users input complex or unusual
data. This includes exact or approximate numbers, dates and times, or colors.

Note: You can find the examples from this section on GitHub as advanced-
examples.html (see it live also).

Widgets for numbers are created with the <input> element, with its type attribute
set to the value number. This control looks like a text field but allows only
floating-point numbers, and usually provides some buttons to increase or
decrease the value of the widget.

It's also possible to:

(c) ketabton.com: The Digital Library

Constrain the value by setting the min and max attributes.
Specify the amount by which the increase and decrease buttons change the
widget's value by setting the step attribute.

Example

<input type="number" name="age" id="age" min="1" max="10" step="2">

This creates a number widget whose value is restricted to any value between
1 and 10, and whose increase and decrease buttons change its value by 2.

number INPULS are not supported in versions of Internet Explorer below 10.

Another way to pick a number is to use a slider. Visually speaking, sliders are
less accurate than text fields, therefore they are used to pick a number whose
exact value is not necessarily important.

A slider is created by using the <input> with its type attribute set to the
value range. It's important to properly configure your slider; to that end, it's
highly recommended that you set the min, max, and step attributes.

Example

<input type="range" name="beans" id="beans" min="0" max="500" step="10">

This example creates a slider whose value may range between 0 and 500,
and whose increment/decrement buttons change the value by +10 and -10.

One problem with sliders is that they don't offer any kind of visual feedback as
to what the current value is. You need to add this yourself with JavaScript, but
this is relatively easy to do. In this example we add an empty element,
in which we will write the current value of the slider, updating it as it is
changed.

<label for="beans">How many beans can you eat?</label>
<input type="range" name="beans" id="beans" min="@" max="500" step="10">

This can be implemented using some simple JavaScript:

(c) ketabton.com: The Digital Library

var beans
var count

document.querySelector('#beans');
document.querySelector('.beancount");

count.textContent = beans.value;

beans.oninput = function() {
count.textContent = beans.value;

}

Here we store references to the range input and the span in two variables,
then we immediately set the span's textcontent to the current value Of the input.
Finally, we set up an oninput event handler so that every time the range slider
IS moved, the span textcontent IS updated to the new input value.

range INPUtS are not supported in versions of Internet Explorer below 10.
Date and time picker

Gathering date and time values has traditionally been a nightmare for web
developers. HTML5 brings some enhancements here by providing a special
control to handle this specific kind of data.

A date and time control is created using the <input> element and an
appropriate value for the type attribute, depending on whether you wish to

collect dates, times, or both.
datetime-local

This creates a widget to display and pick a date with time, but without any
specific time zone information.

‘ <input type="datetime-local" name="datetime" id="datetime">

month
This creates a widget to display and pick a month with a year.

‘ <input type="month" name="month" id="month">

time
This creates a widget to display and pick a time value.

‘ <input type="time" name="time" id="time">

week
This creates a widget to display and pick a week number and its year.

(c) ketabton.com: The Digital Library

<input type="week" name="week" id="week">

All date and time control can be constrained using the min and max attributes.

<label for="myDate">When are you available this summer?</label>
<input type="date" name="myDate" min="2013-06-01" max="2013-08-31" id="myDate">

Warning — The date and time widgets are still poorly supported. At the
moment, Chrome, Edge and Opera support them well, but there is no support
in Internet Explorer, and Firefox and Safari have very little support for these.

Color picke

Colors are always a bit difficult to handle. There are many ways to express
them: RGB values (decimal or hexadecimal), HSL values, keywords, etc. The
color widget lets users pick a color in both textual and visual ways.

A color widget is created using the <input> element with its type attribute set to
the value color.

<input type="color" name="color" id="color">

Warning — Color widget support it currently not very good. There is no
support in Internet Explorer, and Safari currently doesn't support it either. The
other major browsers do support it.

Other widgets

There are a few other widgets that cannot be easily classified due to their very
specific behaviors, but which are still very useful.

Note: You can find the examples from this section on GitHub as other-
examples.html (see it live also).

HTML forms are able to send files to a server; this specific action is detailed in
the article Sending and retrieving form data. The file picker widget is how the user
can choose one or more files to send.

(c) ketabton.com: The Digital Library

To create a file picker widget, you use the <input> element with its type attribute
set to file. The types of files that are accepted can be constrained using

the accept attribute. In addition, if you want to let the user pick more than one
file, you can do so by adding the muitipie attribute.

Example

In this example, a file picker is created that requests graphic image files. The
user is allowed to select multiple files in this case.

<input type="file" name="file" id="file" accept="image/*" multiple>

Hidden content

It's sometimes convenient for technical reasons to have pieces of data that
are sent with a form but not displayed to the user. To do this, you can add an
invisible element in your form. Use an <input> With its type attribute set to the
value hidden.

If you create such an element, it's required to set itS name and value attributes:

<input type="hidden" id="timestamp"” name="timestamp" value="1286705410">

Image butto

The image button control is one which is displayed exactly like

an element, except that when the user clicks on it, it behaves like a
submit button (see above).

An image button is created using an <input> element with its type attribute set
to the value image. This element supports exactly the same set of attributes as
the element, plus all the attributes supported by other form buttons.

<input type="image" alt="Click me!" src="my-img.png" width="80" height="30" />

If the image button is used to submit the form, this widget doesn't submit its
value; instead the X and Y coordinates of the click on the image are submitted
(the coordinates are relative to the image, meaning that the upper-left corner
of the image represents the coordinate 0, 0). The coordinates are sent as two
key/value pairs:

« The X value key is the value of the name attribute followed by the string ".x".

« The Y value key is the value of the name attribute followed by the string ".y".
So for example when you click on the image of this widget, you are sent to a
URL like the following:

(c) ketabton.com: The Digital Library

http://foo.com?pos.x=123&pos.y=456

This is a very convenient way to build a "hot map". How these values are sent
and retrieved is detailed in the Sending and retrieving form data article.

Meters and progress bars

Meters and progress bars are visual representations of numeric values.

Progress

A progress bar represents a value that changes over time up to a maximum
value specified by the max attribute. Such a bar is created using
a <progress> element.

<progress max="100" value="75">75/100</progress>

This is for implementing anything requiring progress reporting, such as the
percentage of total files downloaded, or the number of questions filled in on a
guestionnaire.

The content inside the <progress> element is a fallback for browsers that don't
support the element and for assistive technologies to vocalize it.

Meter

A meter bar represents a fixed value in a range delimited by a nin and
a max value. This value is visualy rendered as a bar, and to know how this bar
looks, we compare the value to some other set values:

« The 10w and high values divide the range in three parts:

o The lower part of the range is between the min and 10w values (including those
values).

o The medium part of the range is between the 10w and nigh values (excluding
those values).

o The higher part of the range is between the nigh and max values (including
those values).

o The optimum Value defines the optimum value for the <meter> element. In
conjuction with the 10w and high value, it defines which part of the range is
prefered:

o Ifthe optimum value is in the lower part of the range, the lower range is
considered to be the prefered part, the medium range is considered to be the
average part and the higher range is considered to be the worst part.

(c) ketabton.com: The Digital Library

o If the optimum value is in the medium part of the range, the lower range is
considered to be an average part, the medium range is considered to be the
prefered part and the higher range is considered to be average as well.

o If the optimum value is in the higher part of the range, the lower range is

considered to be the worst part, the medium range is considered to be the

average part and the higher range is considered to be the prefered part.

All browsers that implement the <meter> element use those values to change

the color of the meter bar:

If the current value is in the prefered part of the range, the bar is green.

If the current value is in the average part of the range, the bar is yellow.
If the current value is in the worst part of the range, the bar is red.

Such a bar is created using a <meter> element. This is for implementing any
kind of meter, for example a bar showing total space used on a disk, which
turns red when it starts to get full.

<meter min="0" max="100" value="75" low="33" high="66" optimum="50">75</meter>

The content inside the <meter> element is a fallback for browsers that don't
support the element and for assistive technologies to vocalize it.

Support for progress and meter is fairly good — there is no support in Internet
Explorer, but other browsers support it well.

Conclusion

As you'll have seen above, there are a lot of different types of available form
elements — you don't need to remember all of these details at once, and can
return to this article as often as you like to check up on details.

See also

To dig into the different form widgets, there are some useful external
resources you should check out:

(c) ketabton.com: The Digital Library

o The Current State of HTML5 Forms by Wufoo

e HTMLS5 Tests - inputs on Quirksmode (also available for mobile browsers)
Previous Overview: FormsNext

This article looks at what happens when a user submits a form — where does the data
go, and how do we handle it when it gets there? We also look at some of the security
concerns associated with sending form data.

Prerequisites: Basic computer literacy, an understanding of HTML, and basic knowledge
of HTTP and server-side programming.

Objective: To understand what happens when form data is submitted, including ge
idea of how data is processed on the server

Where does the data go?

Here we'll discuss what happens to the data when a form is submitted.

About client/server architecture

The web is based on a very basic client/server architecture that can be
summarized as follows: a client (usually a Web browser) sends a request to a
server (most of the time a web server like Apache, Nainx, 1IS, Tomcat, etc.),
using the HTTP protocol. The server answers the request using the same
protocol.

Client Server

Fequest

-

HTTP{S)
‘
;: | Response

(c) ketabton.com: The Digital Library

On the client side, an HTML form is nothing more than a convenient user-
friendly way to configure an HTTP request to send data to a server. This
enables the user to provide information to be delivered in the HTTP request.

Note: To get a better idea of how client-server architectures work, read our Server-side
website programming first steps module.

On the client side: defining how to send the datal

The <form> element defines how the data will be sent. All of its attributes are
designed to let you configure the request to be sent when a user hits a submit
button. The two most important attributes are action and method.

The action attribute

This attribute defines where the data gets sent. Its value must be a valid URL.
If this attribute isn't provided, the data will be sent to the URL of the page
containing the form.

In this example, the data is sent to an absolute URL — http://foo.com:

‘ <form action="http://foo.com">
Here, we use a relative URL — the data is sent to a different URL on the
server

‘ <form action="/somewhere_else">

When specified with no attributes, as below, the <form> data is sent to the
same page that the form is present on:

‘ <form>

Many older pages use the following notation to indicate that the data should
be sent to the same page that contains the form; this was required because
until HTMLS5, the actionattribute was required. This is no longer needed.

‘ <form action="#">

Note: It's possible to specify a URL that uses the HTTPS (secure HTTP) protocol. When
you do this, the data is encrypted along with the rest of the request, even if the form
itself is hosted on an insecure page accessed using HTTP. On the other hand, if the form
is hosted on a secure page but you specify an insecure HTTP URL with

the action attribute, all browsers display a security warning to the user each time they
try to send data because the data will not be encrypted.

The method attribute

(c) ketabton.com: The Digital Library

This attribute defines how data is sent. The HTTP protocol provides several
ways to perform a request; HTML form data can be transmitted via a number
of different ones, the most common of which are the ser method and

the postT method.

To understand the difference between those two methods, let's step back and
examine how HTTP works. Each time you want to reach a resource on the
Web, the browser sends a request to a URL. An HTTP request consists of two
parts: a header that contains a set of global metadata about the browser's
capabilities, and a body that can contain information necessary for the server
to process the specific request.

The GET method

The ceT method is the method used by the browser to ask the server to send
back a given resource: "Hey server, | want to get this resource."” In this case,
the browser sends an empty body. Because the body is empty, if a form is
sent using this method the data sent to the server is appended to the URL.
Consider the following form:

<form action="http://foo.com” method="get">
<div>
<label for="say">What greeting do you want to say?</label>
<input name="say" id="say" value="Hi">
</div>
<div>
<label for="to">Who do you want to say it to?</label>
<input name="to" id="to" value="Mom">
</div>
<div>
<button>Send my greetings</button>
</div>
</form>

Since the ceT method has been used, you'll see the
URL www.foo.com/?say=Hi&to=Momappear in the browser address bar when you
submit the form.

(c) ketabton.com: The Digital Library

!/’_L Problem loading page “\"'

. :‘\(‘) @ | www.foo.com/?say=Hi&to=Mom ¢ wBE + A&

(3] Most Visited ~ [MDN ~ (] Mozilla general ~ [_] FirefoxOS ecosy.. ~ [__] Meeting details

Server not found

Firefox can’t find the server at www.foo.com.
e Check the address for typing errors such as ww.example.com instead o
www.example.com

¢ If you are unable to load any pages, check your computer’s network
connection.

¢ |f your computer or network is protected by a firewall or proxy, make su
that Nightly is permitted to access the Web.

Try Again

The data is appended to the URL as a series of name/value pairs. After the
URL web address has ended, we include a question mark (?) followed by the
name/value pairs, each one separated by an ampersand (&). In this case we
are passing two pieces of data to the server:

« say, Which has a value of Hi

« to, Which has a value of mom
The HTTP request looks like this:

(c) ketabton.com: The Digital Library

GET /?say=Hi&to=Mom HTTP/1.1
Host: foo.com

Note: You can find this example on GitHub — see get-method.html (see it live also).
The posT method is a little different. It's the method the browser uses to talk to
the server when asking for a response that takes into account the data
provided in the body of the HTTP request: "Hey server, take a look at this data
and send me back an appropriate result." If a form is sent using this method,
the data is appended to the body of the HTTP request.

Let's look at an example — this is the same form we looked at in

the ceT section above, but with the method attribute set to post.

<form action="http://foo.com” method="post">
<div>
<label for="say">What greeting do you want to say?</label>
<input name="say" id="say" value="Hi">
</div>
<div>
<label for="to">Who do you want to say it to?</label>
<input name="to" id="to" value="Mom">
</div>
<div>
<button>Send my greetings</button>
</div>
</form>

When the form is submitted using the post method, you get no data appended
to the URL, and the HTTP request looks like so, with the data included in the
request body instead:

POST / HTTP/1.1

Host: foo.com

Content-Type: application/x-www-form-urlencoded
Content-Length: 13

say=Hi&to=Mom

The content-Length header indicates the size of the body, and the content-
Type header indicates the type of resource sent to the server. We'll discuss
these headers later on.

Note: You can find this example on GitHub — see post-method.html (see it live also).

Viewing HTTP requests

(c) ketabton.com: The Digital Library

o s~ wnN e

HTTP requests are never displayed to the user (if you want to see them, you
need to use tools such as the Firefox Network Monitor or the Chrome Developer
Tools). As an example, your form data will be shown as follows in the Chrome
Network tab. After submitting the form:

Press F12

Select "Network"

Select "All"

Select "foo.com" in the "Name" tab

Select "Headers"

You can then get the form data, as shown in the image below.

[ﬂ Elements Console Sources Network Timeline Profiles Application Security Audits

® ® W Y \Vew 8= = | [| Preservelog (| Disable cache @[] Offine No throttling v
| |_ Regex (| Hide data URLs [/l XHR JS CSS Img Media Font Doc WS Manifest Other
| S00ms 1000ms 1500ms 2000ms 2500ms 3000ms 3500ms 4000ms 4500ms 5000ms SE00m
Mame ¥ Headers Preview Response Cookies Timing
. User-Agent: Mozilla/5.8 (Macintosh; Intel Mac 05 X 10_12_3) AppleWebKit/537
|| www.foo.com L, like Gecka) Chrome/56.@.2924.87 Safari/537.36
|| load_style.css v Form Data view source view URL encoded
|=| cordovabeach.jpg say: Hi
23 requests | 22.0KB transferred |... to: Mom

The only thing displayed to the user is the URL called. As we mentioned
above, with a cetrequest the user will see the data in their URL bar, but with
a posT request they won't. This can be very important for two reasons:

. If you need to send a password (or any other sensitive piece of data), never

use the ceT method or you risk displaying it in the URL bar, which would be
very insecure.

If you need to send a large amount of data, the rost method is preferred
because some browsers limit the sizes of URLS. In addition, many servers
limit the length of URLSs they accept.

Whichever HTTP method you choose, the server receives a string that will be

parsed in order to get the data as a list of key/value pairs. The way you
access this list depends on the development platform you use and on any

(c) ketabton.com: The Digital Library

specific frameworks you may be using with it. The technology you use also
determines how duplicate keys are handled; often, the most recently received
value for a given key is given priority.

Example: Raw PHP

PHP offers some global objects to access the data. Assuming you've used

the postmethod, the following example just takes the data and displays it to the
user. Of course, what you do with the data is up to you. You might display it,
store it into a database, send it by email, or process it in some other way.

<?php
// The global $_POST variable allows you to access the data sent with the POST
method by name
// To access the data sent with the GET method, you can use $ GET
$say = htmlspecialchars($ _POST['say']);
$to = htmlspecialchars($ POST['to']);
echo $say, ' ', $to;
?>

This example displays a page with the data we sent. You can see this in
action in our example php-example.html file — which contains the same
example form as we saw before, with a method Of post and an action Of php-
example.php. When it is submitted, it sends the form data to php-example.php,
which contains the PHP code seen in the above block. When this code is
executed, the output in the browser is Hi Mom.

0@ | http:/flocalnost:B888/forms/php- * | 4

& "
& (0 localhost:8888, ¢ HTBe » =
(@& Most visited = [MDN = [Mozilla general = »

Hi Mom

(c) ketabton.com: The Digital Library

Note: This example won't work when you load it into a browser locally — browsers
cannnot interpret PHP code, so when the form is submitted the browser will just offer
to download the PHP file for you. To get it to work, you need to run the example
through a PHP server of some kind. Good options for local PHP testing

are MAMP (Mac and Windows) and AMPPS (Mac, Windows, Linux).

Example: Python

This example shows how you would use Python to do the same thing —
display the submitted data on a web page. This uses the Flask framework for
rendering the templates, handling the form data submission, etc (see python-
example.py).

from flask import Flask, render_template, request
app = Flask(__name_)

@app.route('/', methods=['GET', 'POST'])
def form():
return render_template('form.html")

@app.route('/hello', methods=['GET', 'POST'])
def hello():

return render_template('greeting.html', say=request.form['say'],
to=request.form['to'])

if _ name__

== "__main__":
app.run()

The two templates referenced in the above code are as follows:

« form.html: The same form as we saw above in the The POST method Section but
with the action setto {{ url_for('hello') }}. (This is a Jinja2 template, which is
basically HTML but can contain calls to the Python code that is running the
web server contained in curly braces. ur1_for('hello") is basically saying
"redirect to /ne110when the form is submitted".)

« greeting.html: This template just contains a line that renders the two bits of data
passed to it when it is rendered. This is done via the nel1o() function seen
above, which runs when the /ne110 URL is navigated to.

Note: Again, this code won't work if you just try to load it into a browser directly.
Python works a bit differently to PHP — to run this code locally you'll need to install
Python/PIP, then install Flask using pip3 install flask. At this point you should be able
to run the example using python3 python-example.py, then navigating

to localhost:5000 in your browser.

(c) ketabton.com: The Digital Library

Other languages and frameworks

There are many other server-side technologies you can use for form handling,
including Perl, Java, .Net, Ruby, etc. Just pick the one you like best. That
said, it's worth noting that it's very uncommon to use these technologies
directly because this can be tricky. It's more common to use one of the many
nice frameworks that make handling forms easier, such as:

o Symfony for PHP

« Dijango for Python (a bit more heavyweight than Flask, but with more tools and
options).

o Express for Node.js

e Ruby On Rails for Ruby

e Grails for Java

« etc.

It's worth noting that even using these frameworks, working with forms isn't
necessarily easy. But it's much easier than trying to write all the functionality
yourself from scratch, and will save you a lot of time.

Note: It is beyond the scope of this article to teach you any server-side languages or
frameworks. The links above will give you some help, should you wish to learn them.

A special case: sending files

Sending files with HTML forms is a special case. Files are binary data — or
considered as such — whereas all other data is text data. Because HTTP is a
text protocol, there are special requirements for handling binary data.

The enctype attribute

This attribute lets you specify the value of the content-Type HTTP header
included in the request generated when the form is submitted. This header is
very important because it tells the server what kind of data is being sent. By
default, its value is application/x-www-form-urlencoded. In human terms, this
means: "This is form data that has been encoded into URL parameters."

If you want to send files, you need to take three extra steps:

(c) ketabton.com: The Digital Library

« Set the method attribute to rost because file content can't be put inside URL
parameters.

« Set the value of enctype t0 multipart/form-data because the data will be split into
multiple parts, one for each file plus one for the text data included in the form
body (if text is also entered into the form).

« Include one or more File picker widgets to allow your users to select the file(s)
that will be uploaded.

For example:

<form method="post" enctype="multipart/form-data">
<div>
<label for="file">Choose a file</label>
<input type="file" id="file" name="myFile">
</div>
<div>
<button>Send the file</button>
</div>
</form>

Note: Some browsers support the multiple attribute on the <input> element, which
allows more than one file to be chosen for uploading with only one <input>element.
How the server handles those files really depends on the technology used on the server.
As mentioned previously, using a framework will make your life a lot easier.

Warning: Many servers are configured with a size limit for files and HTTP requests in
order to prevent abuse. It's important to check this limit with the server administrator
before sending a file.

Common security concerns

Each time you send data to a server, you need to consider security. HTML
forms are by far the most common attack vectors (places where attacks can
occur) against servers. The problems never come from the HTML forms
themselves — they come from how the server handles data.

Depending on what you're doing, there are some very well-known security
iIssues that you'll come up against:

XSS and CSRK

(c) ketabton.com: The Digital Library

Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF) are
common types of attacks that occur when you display data sent by a user
back to the user or to another user.

XSS lets attackers inject client-side script into Web pages viewed by other
users. A cross-site scripting vulnerability may be used by attackers to bypass
access controls such as the same origin policy. The effect of these attacks may
range from a petty nuisance to a significant security risk.

CSREF attacks are similar to XSS attacks in that they start the same way — by
Injecting client-side script into Web pages — but their target is different. CSRF
attackers try to escalate privileges to those of a higher-privileged user (such
as a site administrator) to perform an action they shouldn't be able to do (for
example, sending data to an untrusted user).

XSS attacks exploit the trust a user has for a web site, while CSRF attacks
exploit the trust a web site has for its users.

To prevent these attacks, you should always check the data a user sends to
your server and (if you need to display it) try not to display HTML content as
provided by the user. Instead, you should process the user-provided data so
you don't display it verbatim. Almost all frameworks on the market today
implement a minimal filter that removes the

HTML <script>, <iframe> and <object> elements from data sent by any user. This

helps to mitigate the risk, but doesn't necessarily eradicate it.
SQL injectio

SQL injection is a type of attack that tries to perform actions on a database
used by the target web site. This typically involves sending a SQL request in
the hope that the server will execute it (usually when the application server
tries to store data sent by a user). This is actually one of the main vector attacks
against web sites.

The consequences can be terrible, ranging from data loss to attacks taking
control of a whole website infrastructure by using privilege escalation. This is
a very serious threat and you should never store data sent by a user without
performing some sanitization (for example, by

uSiNg mysqgl real escape string() ON @ PHP/MySQL infrastructure).

These kinds of attacks can occur when your application builds HTTP headers
or emails based on the data input by a user on a form. These won't directly
damage your server or affect your users, but they are an open door to deeper

problems such as session hijacking or phishing attacks.

(c) ketabton.com: The Digital Library

These attacks are mostly silent, and can turn your server into a zombie.

So, how do you fight these threats? This is a topic far beyond this guide, but
there are a few rules to keep in mind. The most important rule is: never ever
trust your users, including yourself; even a trusted user could have been

hijacked.

All data that comes to your server must be checked and sanitized. Always. No
exception.

« Escape potentially dangerous characters. The specific characters you should
be cautious with vary depending on the context in which the data is used and
the server platform you employ, but all server-side languages have functions
for this.

« Limit the incoming amount of data to allow only what's necessary.

« Sandbox uploaded files (store them on a different server and allow access to
the file only through a different subdomain or even better through a fully
different domain name).

You should avoid many/most problems if you follow these three rules, but it's
always a good idea to get a security review performed by a competent third
party. Don't assume that you've seen all the possible problems.

Note: The Website security article of our server-side learning topic discusses the above
threats and potential solutions in more detail.

Conclusion

As you can see, sending form data is easy, but securing an application can be
tricky. Just remember that a front-end developer is not the one who should
define the security model of the data. Yes, as we'll see, it's possible to perform
client side data validation but the server can't trust this validation because it has
no way to truly know what really happens on the client side.

(c) ketabton.com: The Digital Library

Sending data is not enough — we also need to make sure that the data users fill out in
forms is in the correct format that we need to process it successfully, and that it won't
break our applications. We also want to help our users to fill out our forms correctly and
not get frustrated when trying to use our apps. Form validation helps us achieve these
goals — this article tells you what you need to know.

Prerequisites: Computer literacy, a reasonable understanding of HTML, CSS, and Java

Objective: To understand what form validation is, why it's important, and how to i

What is form validation?

Go to any popular site with a registration form, and you will notice that they
give you feedback when you don't enter your data in the format they are
expecting. You'll get messages like:

« "This field is required" (you can't leave this field blank)

« "Please enter your phone number in the format xxx-xxxx" (it wants three
numbers followed by a dash, followed by four numbers)

. "Please enter a valid e-mail address" (the thing you've entered doesn't look
like a valid e-mail address)

« "Your password needs to be between 8 and 30 characters long, and contain
one uppercase letter, one symbol, and a number" (seriously?)

This is called form validation — when you enter data, the web application
checks it to see if it is correct. If correct, the application allows the data to be
submitted to the server and (usually) saved in a database; if not, it gives you
error messages to explain what you've done wrong (provided you've done it
right). Form validation can be implemented in a number of different ways.
The truth is that none of us like filling out forms — there is a lot of evidence to
show that users get annoyed by forms, and it will cause them to leave and go
somewhere else if they are done poorly. In short, forms suck.

We want to make filling out web forms as painless as possible. So why do we
insist on blocking our users at every turn? There are three main reasons:

(c) ketabton.com: The Digital Library

« We want to get the right data, in the right format — our applications won't
work properly if our user's data is stored in any old format they like, or if they
don't enter the correct information in the correct places, or omit it altogether.

« We want to protect our users — if they enter an easy-to-guess password, or
no password at all, malicious users can easily get into their accounts and steal
their data.

« We want to protect ourselves — there are many ways that malicious users
can misuse unprotected forms to damage the application they are part of

see Website security).
Different types of form validatio
There are different types of form validation that you'll encounter on the web:

« Client-side validation is validation that occurs in the browser, before the data
has been submitted to the server. This is more user-friendly than server-side
validation as it gives an instant response. This can be further subdivided:

o JavaScript validation is coded using JavaScript. It is completely customizable.

o Built-in form validation is done with HTMLS5 form validation features, and
generally doesn't require JavaScript. This has better performance, but it is not
as customizable.

« Server-side validation is validation that occurs on the server, after the data
has been submitted — server-side code is used to validate the data before it
Is put into the database. If the data is wrong, a response is sent back to the
client to tell the user what went wrong. Server-side validation is not as user-
friendly as client-side validation, as it requires a round trip to the server, but it
Is your application's last line of defense against bad (meaning incorrect, or
even malicious) data. All popular server-side frameworks have features
for validating and sanitizing data (making it safe).
In the real world, developers tend to use a combination of client-side and
server-side validation, to be on the safe side.

Using built-in form validation

One of the features of HTMLS5 is the ability to validate most user data without
relying on scripts. This is done by using validation attributes on form elements,
which allow you to specify rules for a form input like whether a value needs to
be filled in, the minimum and maximum length of the data, whether it needs to

(c) ketabton.com: The Digital Library

be a number, an email address, or something else, and a pattern that it must
match. If the entered data follows all those rules, it is considered valid; if not, it
Is considered invalid.

When an element is valid:

« The element matches the :va1id CSS pseudo-class; this will let you apply a
specific style to valid elements.

. If the user tries to send the data, the browser will submit the form, provided
there is nothing else stopping it from doing so (e.g., JavaScript).

When an element is invalid:

« The element matches the :invalid CSS pseudo-class; this will let you apply a
specific style to invalid elements.
« If the user tries to send the data, the browser will block the form and display

an error message.

Validation constraints on input elements — starting simple

In this section, we'll look at some of the different HTMLS5 features that can be
used to validate <input> elements.

Let's start with a simple example — an input that allows you to choose your
favorite fruit out of a choice of banana or cherry. This involves a simple

text <input> with a matching label, and a submit <button>. You can find the

source code on GitHub as fruit-start.ntml, and a live example below:
Open in CodePenOpen in JSFiddle

To begin with, make a copy of fruit-start.html in @ Nnew directory on your hard
drive.

The required attribute

The simplest HTML5 validation feature to use is the required attribute — if you
want to make an input mandatory, you can mark the element using this
attribute. When this attribute is set, the form won't submit (and will display an
error message) when the input is empty (the input will also be considered
invalid).

Add a required attribute to your input, as shown below:

<form>
<label for="choose">Would you prefer a banana or cherry?</label>
<input id="choose" name="i_like" required>
<button>Submit</button>

</form>

Also take note of the CSS included in the example file:

(c) ketabton.com: The Digital Library

input:invalid {
border: 2px dashed red;
}

input:valid {
border: 2px solid black;
}

This causes the input to have a bright red dashed border when it is invalid,
and a more subtle black border when valid. Try out the new behaviour in the
example below:

Open in CodePenOpen in JSFiddle

a Regular Expression as its value. A regular expression (regex) is a pattern that
can be used to match character combinations in text strings, so they are ideal
for form validation (as well as variety of other uses in JavaScript). Regexs are
quite complex and we do not intend to teach you them exhaustively in this
article.

Below are some examples to give you a basic idea of how they work:

« a— matches one character that is a (not b, not aa, etc.)

e abc — Mmaitches a, followed by b, followed by c.

« a*x — matches the character a, zero or more times (+ matches a character one
or more times).

e [~a] — matches one character that is not a.

« alb — matches one character that is a or b.

e [abc] — matches one character that is a, b, or c.

« [~abc] — matches one character that is not a, b, or c.

e [a-z] — matches any character in the range a-z, lower case only (you can
use [A-za-z] for lower and upper case, and [a-z] for upper case only).

« a.c — matches a, followed by any character, followed by c.

« a{5} — matches a, 5 times.

e a{5,7} — matches a, 5 to 7 times, but no less or more.
You can use numbers and other characters in these expressions too, such as:

« [-]1— matches a space or a dash.

e [0-9] — matches any digit in the range O to 9.
You can combine these in pretty much any way you want, specifying different
parts one after the other:

(c) ketabton.com: The Digital Library

[L1].*k — A single character that is an upper or lowercase L, followed by zero
or more characters of any type, followed by a single lowercase k.

[A-Z][A-za-z' -]+ — A single upper case character followed by one or more
characters that are an upper or lower case letter, a dash, an apostrophe, or a
space. This could be used to validate the city/town names of English-speaking
countries, which need to start with a capital letter, but don't contain any other
characters. Examples from the UK include Manchester, Ashton-under-lyne,
and Bishop's Stortford.

[6-91{3}[-1[6-91{3}[-1[e-9]1{4} — A simple match for a US domestic phone
number — three digits, followed by a space or a dash, followed by three digits,
followed by a space or a dash, followed by four digits. You might have to
make this more complex, as some people write their area code in
parentheses, but it works for a simple demonstration.

Anyway, let's implement an example — update your HTML to add

a pattern attribute, like so:

<form>
<label for="choose">Would you prefer a banana or a cherry?</label>
<input id="choose" name="i_like" required pattern="banana|cherry">
<button>Submit</button>

</form>

Open in CodePenOpen in JSFiddle
In this example, the <input> element accepts one of two possible values: the
string "banana" or the string "cherry".
At this point, try changing the value inside the pattern attribute to equal some
of the examples you saw earlier, and look at how that affects the values you
can enter to make the input value valid. Try writing some of your own, and see
how you get on! Try to make them fruit-related where possible, so your
examples make sense!
Note: Some <input> element types do not need a pattern attribute to be validated.
Specifying the email type for example validates the inputted value against a regular
expression matching a well-formed email address (or a comma-separated list of email
addresses if it has the multiple attribute). As a further example, fields with the url type
automatically require a properly-formed URL.

Note: The <textarea> element does not support the pattern attribute.

Constraining the length of your entries

All text fields created by (<input> Or <textarea>) can be constrained in size using
the minlength and maxiength attributes. A field is invalid if its value is shorter than
the minlength Value or longer than the maxiength value. Browsers often don't let
the user type a longer value than expected into text fields anyway, but it is
useful to have this fine-grained control available.

(c) ketabton.com: The Digital Library

For number fields (i.e. <input type="number">), the min and max attributes also
provide a validation constraint. If the field's value is lower than the nin attribute
or higher than the max attribute, the field will be invalid.

Let's look at another example. Create a new copy of the fruit-start.ntml file.
Now delete the contents of the <body> element, and replace it with the
following:

<form>
<div>
<label for="choose">Would you prefer a banana or a cherry?</label>
<input id="choose" name="i_like" required minlength="6" maxlength="6">
</div>
<div>
<label for="number">How many would you like?</label>
<input type="number" id="number" name="amount" value="1" min="1" max="10">
</div>
<div>
<button>Submit</button>
</div>
</form>

« Here you'll see that we've given the text field a minlength and maxiength of 6 —
the same length as banana and cherry. Entering less characters will show as
invalid, and entering more is not possible in most browsers.

« We've also given the number field a min of 1 and a max of 10 — entered numbers
outside this range will show as invalid, and you won't be able to use the
increment/decrement arrows to move the value outside this range.

Here is the example running live:

Open in CodePenOpen in JSFiddle
Note: <input type="number"> (and other types, like range) can also take a stepattribute,
which specifies what increment the value will go up or down by when the input
controls are used (like the up and down number buttons).

Full example

Here is a full example to show off usage of HTML's built-in validation features:

<form>
<p>
<fieldset>
<legend>Title<abbr title="This field is mandatory">*</abbr></legend>
<input type="radio" required name="title" id="rl" value="Mr"><label
for="r1">Mr.</label>
<input type="radio" required name="title" id="r2" value="Ms"><label
for="r2">Ms.</label>
</fieldset>
</p>

(c) ketabton.com: The Digital Library

<p>
<label for="nl">How old are you?</label>
<l-- The pattern attribute can act as a fallback for browsers which

don't implement the number input type but support the pattern attribute.
Please note that browsers that support the pattern attribute will make it
fail silently when used with a number field.
Its usage here acts only as a fallback -->
<input type="number" min="12" max="120" step="1" id="nl" name="age"
pattern="\d+">
</p>
<p>
<label for="t1">What's your favorite fruit?<abbr title="This field is
mandatory">*</abbr></label>
<input type="text" id="t1" name="fruit" list="11" required
pattern="[BbJ]anana|[Cc]herry|[Aa]pple|[Ss]trawberry|[L1l]emon|[Oo]range">
<datalist id="11">
<option>Banana</option>
<option>Cherry</option>
<option>Apple</option>
<option>Strawberry</option>
<option>Lemon</option>
<option>Orange</option>
</datalist>
</p>
<p>
<label for="t2">What's your e-mail?</label>
<input type="email" id="t2" name="email">
</p>
<p>
<label for="t3">Leave a short message</label>
<textarea id="t3" name="msg" maxlength="140" rows="5"></textarea>
</p>
<p>
<button>Submit</button>
</p>
</form>
body {
font: lem sans-serif;
padding: O;
margin : 0;

}

form {
max-width: 200px;
margin: 0;
padding: © 5px;

}

p > label {
display: block;
}

input[type=text],
input[type=email],

(c) ketabton.com: The Digital Library

input[type=number],

textarea,

fieldset {

/* required to properly style form
elements on WebKit based browsers */
-webkit-appearance: none;

width : 100%;
border: 1px solid #333;
margin: 0;

font-family: inherit;
font-size: 90%;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

input:invalid {
box-shadow: @ © 5px 1px red;
}

input:focus:invalid {
outline: none;

}

Customized error messages

As seen in the examples above, each time the user tries to submit an invalid
form, the browser displays an error message. The way this message is
displayed depends on the browser.

Open in CodePenOpen in JSFiddle

These automated messages have two drawbacks:

« There is no standard way to change their look and feel with CSS.

« They depend on the browser locale, which means that you can have a page in
one language but an error message displayed in another language.

French versions of feedback messages on an English page
Browser Rendering

What's your favorite fruit?*

Weuillez compléter ce champ.

Firefox 17 (Windows 7)

(c) ketabton.com: The Digital Library

French versions of feedback messages on an English page
Browser Rendering

What's your favorite fruit?*

i Veuillez renseigner ce champ.

Chrome 22 (Windows 7)

What's your favorite fruit?*
[|

Ceci est un champ cbligatoire J

Opera 12.10 (Mac OSX)

To customize the appearance and text of these messages, you must use
JavaScript; there is no way to do it using just HTML and CSS.

HTMLS5 provides the constraint validation API to check and customize the state
of a form element. Among other things, it's possible to change the text of the
error message. Let's see a quick example:

<form>
<label for="mail”>I would like you to provide me an e-mail</label>
<input type="email” id="mail" name="mail">
<button>Submit</button>

</form>

In JavaScript, you call the setcustomvalidity() method:

var email = document.getElementById("mail");

email.addEventListener("input", function (event) {
if (email.validity.typeMismatch) {
email.setCustomValidity ("I expect an e-mail, darling!");
} else {
email.setCustomValidity("");
}
})s

Open in CodePenOpen in JSFiddle

Validating forms using JavaScript

(c) ketabton.com: The Digital Library

If you want to take control over the look and feel of native error messages, or
If you want to deal with browsers that do not support HTML's built-in form
validation, you must use JavaScript.

The HTML5 constraint validation API

More and more browsers now support the constraint validation API, and it's
becoming reliable. This API consists of a set of methods and properties
available on each form element.

Constraint validation API properties

Property

validationMessage

validity

validity.customError

validity.patternMismatch

validity.rangeOverflow

validity.rangeUnderflow

validity.stepMismatch

validity.toolLong

Description

A localized message describing the validation constraints that the
any), or the empty string if the control is not a candidate for consti
(willvalidate IS false), Or the element's value satisfies its constrain

A validitystate Object describing the validity state of the element.
Returns true if the element has a custom error; false otherwise.

Returns true if the element's value doesn't match the provided pai

If it returns true, the element will match the :invalid CSS pseudo-c

Returns true if the element's value is higher than the provided ma

If it returns true, the element will match the :invalid and :out-of-rar

Returns true if the element's value is lower than the provided mini

If it returns true, the element will match the :invalid and :out-of-rar

Returns true if the element's value doesn't fit the rules provided by
otherwise false .

If it returns true, the element will match the :invalid and :out-of-rar

Returns true if the element's value is longer than the provided ma
false

If it returns true, the element will match the :invalid and :out-of-rar

(c) ketabton.com: The Digital Library

Property

validity.typeMismatch

validity.valid

validity.valueMissing

willValidate

Description

Returns true if the element's value is not in the correct syntax; oth

If it returns true, the element will match the :inval1id CSS pseudo-c

Returns true if the element's value has no validity problems; false

If it returns true, the element will match the :vai1id CSS pseudo-cla
class otherwise.

Returns true if the element has no value but is a required field; fal

If it returns true, the element will match the :invalid CSS pseudo-c

Returns true if the element will be validated when the form is subr

Constraint validation API methods

Method

checkValidity()

setCustomValidity(message)

Description

Returns true if the element's value has no validity problems; fai:
invalid, this method also causes an invalid event at the element

Adds a custom error message to the element; if you set a custo
element is considered to be invalid, and the specified error is di
JavaScript code to establish a validation failure other than those
constraint validation API. The message is shown to the user wh

If the argument is the empty string, the custom error is cleared.

For legacy browsers, it's possible to use a polyfill such as Hyperform to
compensate for the lack of support for the constraint validation API. Since
you're already using JavaScript, using a polyfill isn't an added burden to your
Web site or Web application's design or implementation.

Example using the constraint validation API

Let's see how to use this
HTML:

API to build custom error messages. First, the

<form novalidate>

(c) ketabton.com: The Digital Library

<p>
<label for="mail">
Please enter an email address:
<input type="email" id="mail" name="mail">

</label>
</p>
<button>Submit</button>
</form>

This simple form uses the novalidate attribute to turn off the browser's
automatic validation; this lets our script take control over validation. However,
this doesn't disable support for the constraint validation API nor the application
of the CSS pseudo—class :valid, :invalid, :in-range @and :out-of-range classes.
That means that even though the browser doesn't automatically check the
validity of the form before sending its data, you can still do it yourself and style
the form accordingly.

The aria-1ive attribute makes sure that our custom error message will be
presented to everyone, including those using assistive technologies such as

screen readers.
CSS

This CSS styles our form and the error output to look more attractive.

/* This is just to make the example nicer */

body {
font: lem sans-serif;
padding: O;
margin : 0;
¥
form {
max-width: 200px;
¥
p* {
display: block;
¥

input[type=email]{
-webkit-appearance: none;

width: 100%;
border: 1px solid #333;

margin: 0;

font-family: inherit;
font-size: 90%;

-moz-box-sizing: border-box;

(c) ketabton.com: The Digital Library

box-sizing: border-box;

}

/* This is our style for the invalid fields */
input:invalid{

border-color: #900;

background-color: #FDD;

}

input:focus:invalid {
outline: none;

}
/* This is the style of our error messages */
.error {

width : 100%;

padding: 9;

font-size: 80%;

color: white;
background-color: #900;
border-radius: © © 5px 5px;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

.error.active {
padding: ©.3em;
}

The following JavaScript code handles the custom error validation.

// There are many ways to pick a DOM node; here we get the form itself and the email
// input box, as well as the span element into which we will place the error message.

var form document.getElementsByTagName('form')[0];
var email = document.getElementById('mail');
var error = document.querySelector('.error');

email.addEventListener("input", function (event) {
// Each time the user types something, we check if the
// email field is valid.
if (email.validity.valid) {
// In case there is an error message visible, if the field
// is valid, we remove the error message.
error.innerHTML = ""; // Reset the content of the message
error.className = "error"; // Reset the visual state of the message
}
}, false);
form.addEventListener("submit"”, function (event) {

(c) ketabton.com: The Digital Library

// Each time the user tries to send the data, we check
// if the email field is valid.
if (lemail.validity.valid) {

// If the field is not valid, we display a custom

// error message.

error.innerHTML = "I expect an e-mail, darling!";

error.className = "error active";

// And we prevent the form from being sent by canceling the event
event.preventDefault();

}
}, false);

Here is the live result:

Open in CodePenOpen in JSFiddle
The constraint validation API gives you a powerful tool to handle form
validation, letting you have enormous control over the user interface above
and beyond what you can do just with HTML and CSS alone.

Validating forms without a built-in AP]

Sometimes, such as with legacy browsers or custom widgets, you will not be
able to (or will not want to) use the constraint validation API. In that case,
you're still able to use JavaScript to validate your form. Validating a form is
more a question of user interface than real data validation.

To validate a form, you have to ask yourself a few questions:

What kind of validation should | perform?
You need to determine how to validate your data: string operations, type
conversion, regular expressions, etc. It's up to you. Just remember that
form data is always text and is always provided to your script as strings.

What should I do if the form does not validate?
This is clearly a Ul matter. You have to decide how the form will behave:
Does the form send the data anyway? Should you highlight the fields
which are in error? Should you display error messages?

How can | help the user to correct invalid data?
In order to reduce the user's frustration, it's very important to provide as
much helpful information as possible in order to guide them in correcting
their inputs. You should offer up-front suggestions so they know what's
expected, as well as clear error messages. If you want to dig into form

(c) ketabton.com: The Digital Library

validation Ul requirements, there are some useful articles you should
read:

« SmashingMagazine: Form-Field Validation: The Errors-Only Approach
« SmashingMagazine: Web Form Validation: Best Practices and Tutorials
» Six Revision: Best Practices for Hints and Validation in Web Forms

« A List Apart: Inline Validation in Web Forms

Example that doesn't use the constraint validation API

In order to illustrate this, let's rebuild the previous example so that it works
with legacy browsers:

<form>
<p>
<label for="mail">
Please enter an email address:
<input type="text" class="mail" id="mail" name="mail">

</label>
<p>
<l-- Some legacy browsers need to have the "type attribute
explicitly set to “submit® on the "“button element -->
<button type="submit">Submit</button>
</form>

As you can see, the HTML is almost the same; we just removed the HTML
validation features. Note that ARIA is an independent specification that's not

specifically related to HTML5.
CsS

Similarly, the CSS doesn't need to change very much; we just turn
the :invalid CSS pseudo-class into a real class and avoid using the attribute
selector that does not work on Internet Explorer 6.

/* This is just to make the example nicer */
body {

font: lem sans-serif;

padding: O;

margin : 9;

}

form {
max-width: 200px;
}

p*A{
display: block;

(c) ketabton.com: The Digital Library

}

input.mail {
-webkit-appearance: none;

width: 100%;
border: 1px solid #333;
margin: 0;

font-family: inherit;
font-size: 90%;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

/* This is our style for the invalid fields */
input.invalid{

border-color: #900;

background-color: #FDD;

}

input:focus.invalid {
outline: none;

}
/* This is the style of our error messages */
.error {

width : 100%;

padding: 9;

font-size: 80%;

color: white;
background-color: #900;
border-radius: © © 5px 5px;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

.error.active {
padding: ©.3em;
}

B -5

The big changes are in the JavaScript code, which needs to do much more of
the heavy lifting.

// There are fewer ways to pick a DOM node with legacy browsers
var form = document.getElementsByTagName('form')[0];
var email = document.getElementById('mail');

(c) ketabton.com: The Digital Library

// The following is a trick to reach the next sibling Element node in the DOM
// This is dangerous because you can easily build an infinite loop.

// In modern browsers, you should prefer using element.nextElementSibling

var error = email;

while ((error = error.nextSibling).nodeType != 1);

// As per the HTML5 Specification
var emailRegExp = /~[a-zA-Z0-9.!#$%&"'*+/=* ~{|}~-]+@[a-zA-Z20-9-]+(?:\.[a-2zA-Z0-9-
1+)*$/;

// Many legacy browsers do not support the addEventListener method.
// Here is a simple way to handle this; it's far from the only one.
function addEvent(element, event, callback) {
var previousEventCallBack = element["on"+event];
element["on"+event] = function (e) {
var output = callback(e);

// A callback that returns “false stops the callback chain
// and interrupts the execution of the event callback.
if (output === false) return false;

if (typeof previousEventCallBack === 'function') {
output = previousEventCallBack(e);
if(output === false) return false;
}
}
s

// Now we can rebuild our validation constraint

// Because we do not rely on CSS pseudo-class, we have to

// explicitly set the valid/invalid class on our email field

addEvent(window, "load", function () {
// Here, we test if the field is empty (remember, the field is not required)
// If it is not, we check if its content is a well-formed e-mail address.

var test = email.value.length === @ || emailRegExp.test(email.value);
email.className = test ? "valid" : "invalid";
}s

// This defines what happens when the user types in the field
addEvent(email, "input", function () {

var test = email.value.length === @ || emailRegExp.test(email.value);
if (test) {
email.className = "valid";
error.innerHTML = "";
error.className = "error";
} else {
email.className = "invalid";
}
})s

// This defines what happens when the user tries to submit the data
addEvent(form, "submit", function () {
var test = email.value.length === @ || emailRegExp.test(email.value);

(c) ketabton.com: The Digital Library

if (ltest) {
email.className
error.innerHTML
error.className

"invalid";
"I expect an e-mail, darling!";
"error active";

// Some legacy browsers do not support the event.preventDefault() method
return false;
I else {

email.className = "valid";
error.innerHTML = "";
error.className = "error";
)i
})s

The result looks like this:

Open in CodePenOpen in JSFiddle
As you can see, it's not that hard to build a validation system on your own.
The difficult part is to make it generic enough to use it both cross-platform and
on any form you might create. There are many libraries available to perform
form validation; you shouldn't hesitate to use them. Here are a few examples:

« Standalone library

o Validate.|s
o jQuery plug-in:
o Validation

Remote validation

In some cases it can be useful to perform some remote validation. This kind of
validation is necessary when the data entered by the user is tied to additional
data stored on the server side of your application. One use case for this is
registration forms, where you ask for a user name. To avoid duplication, it's
smarter to perform an AJAX request to check the availability of the user name
rather than asking the user to send the data, then send back the form with an
error.

Performing such a validation requires taking a few precautions:

« Itrequires exposing an APl and some data publicly; be sure it is not sensitive
data.

(c) ketabton.com: The Digital Library

Network lag requires performing asynchronous validation. This requires some
Ul work in order to be sure that the user will not be blocked if the validation is
not performed properly.

Sending data is not enough — we also need to make sure that the data users fill out in
forms is in the correct format that we need to process it successfully, and that it won't
break our applications. We also want to help our users to fill out our forms correctly and
not get frustrated when trying to use our apps. Form validation helps us achieve these
goals — this article tells you what you need to know.

Prerequisites: Computer literacy, a reasonable understanding of HTML, CSS, and Java

Objective: To understand what form validation is, why it's important, and how to i

What is form validation?

Go to any popular site with a registration form, and you will notice that they
give you feedback when you don't enter your data in the format they are
expecting. You'll get messages like:

"This field is required" (you can't leave this field blank)

"Please enter your phone number in the format xxx-xxxx" (it wants three
numbers followed by a dash, followed by four numbers)

"Please enter a valid e-mail address" (the thing you've entered doesn't look
like a valid e-mail address)

"Your password needs to be between 8 and 30 characters long, and contain
one uppercase letter, one symbol, and a number" (seriously?)

This is called form validation — when you enter data, the web application
checks it to see if it is correct. If correct, the application allows the data to be
submitted to the server and (usually) saved in a database; if not, it gives you
error messages to explain what you've done wrong (provided you've done it
right). Form validation can be implemented in a number of different ways.

(c) ketabton.com: The Digital Library

The truth is that none of us like filling out forms — there is a lot of evidence to
show that users get annoyed by forms, and it will cause them to leave and go
somewhere else if they are done poorly. In short, forms suck.

We want to make filling out web forms as painless as possible. So why do we
Insist on blocking our users at every turn? There are three main reasons:

« We want to get the right data, in the right format — our applications won't
work properly if our user's data is stored in any old format they like, or if they
don't enter the correct information in the correct places, or omit it altogether.

« We want to protect our users — if they enter an easy-to-guess password, or
no password at all, malicious users can easily get into their accounts and steal
their data.

« We want to protect ourselves — there are many ways that malicious users
can misuse unprotected forms to damage the application they are part of

see Website security).
Different types of form validatio
There are different types of form validation that you'll encounter on the web:

« Client-side validation is validation that occurs in the browser, before the data
has been submitted to the server. This is more user-friendly than server-side
validation as it gives an instant response. This can be further subdivided:

o JavaScript validation is coded using JavaScript. It is completely customizable.

o Built-in form validation is done with HTMLS5 form validation features, and
generally doesn't require JavaScript. This has better performance, but it is not
as customizable.

« Server-side validation is validation that occurs on the server, after the data
has been submitted — server-side code is used to validate the data before it
IS put into the database. If the data is wrong, a response is sent back to the
client to tell the user what went wrong. Server-side validation is not as user-
friendly as client-side validation, as it requires a round trip to the server, but it
Is your application's last line of defense against bad (meaning incorrect, or
even malicious) data. All popular server-side frameworks have features
for validating and sanitizing data (making it safe).
In the real world, developers tend to use a combination of client-side and
server-side validation, to be on the safe side.

(c) ketabton.com: The Digital Library

Using built-in form validation

One of the features of HTMLS is the ability to validate most user data without
relying on scripts. This is done by using validation attributes on form elements,
which allow you to specify rules for a form input like whether a value needs to
be filled in, the minimum and maximum length of the data, whether it needs to
be a number, an email address, or something else, and a pattern that it must
match. If the entered data follows all those rules, it is considered valid; if not, it
Is considered invalid.

When an element is valid:

« The element matches the :va1id CSS pseudo-class; this will let you apply a
specific style to valid elements.

. If the user tries to send the data, the browser will submit the form, provided
there is nothing else stopping it from doing so (e.g., JavaScript).

When an element is invalid:

« The element matches the :inva1id CSS pseudo-class; this will let you apply a
specific style to invalid elements.

« If the user tries to send the data, the browser will block the form and display
an error message.

Validation constraints on input elements — starting simple

In this section, we'll look at some of the different HTML5 features that can be
used to validate <input> elements.

Let's start with a simple example — an input that allows you to choose your
favorite fruit out of a choice of banana or cherry. This involves a simple

text <input> with a matching label, and a submit <button>. You can find the

source code on GitHub as fruit-start.html, and a live example below:
Open in CodePenOpen in JSFiddle

To begin with, make a copy of fruit-start.html in @ Nnew directory on your hard
drive.

The required attribute

The simplest HTMLS5 validation feature to use is the required attribute — if you
want to make an input mandatory, you can mark the element using this
attribute. When this attribute is set, the form won't submit (and will display an
error message) when the input is empty (the input will also be considered
invalid).

Add a required attribute to your input, as shown below:

<form>

(c) ketabton.com: The Digital Library

<label for="choose">Would you prefer a banana or cherry?</label>
<input id="choose" name="i_like" required>
<button>Submit</button>

</form>

Also take note of the CSS included in the example file:

input:invalid {
border: 2px dashed red;
}

input:valid {
border: 2px solid black;
}

This causes the input to have a bright red dashed border when it is invalid,
and a more subtle black border when valid. Try out the new behaviour in the
example below:

Open in CodePenOpen in JSFiddle

Validating against a regular expressio

Another very common validation feature is the pattern attribute, which expects
a Reqgular Expression as its value. A regular expression (regex) is a pattern that
can be used to match character combinations in text strings, so they are ideal
for form validation (as well as variety of other uses in JavaScript). Regexs are
guite complex and we do not intend to teach you them exhaustively in this
article.

Below are some examples to give you a basic idea of how they work:

« a— matches one character that is a (not b, not aa, etc.)

« abc — matches a, followed by b, followed by c.

« ax — matches the character a, zero or more times (+ matches a character one
or more times).

e [~a] — matches one character that is not a.

« a|b — matches one character that is a or b.

« [abc] — matches one character that is a, b, or c.

e [~abc] — matches one character that is not a, b, or c.

e [a-z] — matches any character in the range a—z, lower case only (you can
use [A-za-z] for lower and upper case, and [a-z] for upper case only).

« a.c — matches a, followed by any character, followed by c.

e a{5} — matches a, 5 times.

« a{5,7} — matches a, 5 to 7 times, but no less or more.
You can use numbers and other characters in these expressions too, such as:

(c) ketabton.com: The Digital Library

[-] — matches a space or a dash.

[e-9] — matches any digit in the range 0 to 9.

You can combine these in pretty much any way you want, specifying different
parts one after the other:

[L1].*k — A single character that is an upper or lowercase L, followed by zero
or more characters of any type, followed by a single lowercase k.

[A-z][A-za-z' -]+ — A single upper case character followed by one or more
characters that are an upper or lower case letter, a dash, an apostrophe, or a
space. This could be used to validate the city/town names of English-speaking
countries, which need to start with a capital letter, but don't contain any other
characters. Examples from the UK include Manchester, Ashton-under-lyne,
and Bishop's Stortford.

[6-91{3}[-1[6-91{3}[-1[e-91{4} — A simple match for a US domestic phone
number — three digits, followed by a space or a dash, followed by three digits,
followed by a space or a dash, followed by four digits. You might have to
make this more complex, as some people write their area code in
parentheses, but it works for a simple demonstration.

Anyway, let's implement an example — update your HTML to add

a pattern attribute, like so:

<form>
<label for="choose">Would you prefer a banana or a cherry?</label>
<input id="choose" name="i_like" required pattern="banana|cherry">
<button>Submit</button>

</form>

Open in CodePenOpen in JSFiddle
In this example, the <input> element accepts one of two possible values: the
string "banana" or the string "cherry".
At this point, try changing the value inside the pattern attribute to equal some
of the examples you saw earlier, and look at how that affects the values you
can enter to make the input value valid. Try writing some of your own, and see
how you get on! Try to make them fruit-related where possible, so your
examples make sense!
Note: Some <input> element types do not need a pattern attribute to be validated.
Specifying the email type for example validates the inputted value against a regular
expression matching a well-formed email address (or a comma-separated list of email
addresses if it has the multiple attribute). As a further example, fields with the url type
automatically require a properly-formed URL.

Note: The <textarea> element does not support the pattern attribute.

Constraining the length of your entries

(c) ketabton.com: The Digital Library

All text fields created by (<input> Or <textarea>) can be constrained in size using
the minlength and maxlength attributes. A field is invalid if its value is shorter than
the minlength Value or longer than the maxiength value. Browsers often don't let
the user type a longer value than expected into text fields anyway, but it is
useful to have this fine-grained control available.

For number fields (i.e. <input type="number">), the min and max attributes also
provide a validation constraint. If the field's value is lower than the min attribute
or higher than the max attribute, the field will be invalid.

Let's look at another example. Create a new copy of the fruit-start.html file.
Now delete the contents of the <body> element, and replace it with the
following:

<form>
<div>
<label for="choose">Would you prefer a banana or a cherry?</label>
<input id="choose" name="i_like" required minlength="6" maxlength="6">
</div>
<div>
<label for="number"”>How many would you like?</label>
<input type="number" id="number"” name="amount"” value="1" min="1" max="10">
</div>
<div>
<button>Submit</button>
</div>
</form>

Here you'll see that we've given the text field a minlength and maxlength of 6 —
the same length as banana and cherry. Entering less characters will show as
invalid, and entering more is not possible in most browsers.

We've also given the number field a min 0f 1 and a max of 10 — entered numbers
outside this range will show as invalid, and you won't be able to use the
increment/decrement arrows to move the value outside this range.

Here is the example running live:

Open in CodePenOpen in JSFiddle
Note: <input type="number"> (and other types, like range) can also take a stepattribute,
which specifies what increment the value will go up or down by when the input
controls are used (like the up and down number buttons).

Full example

Here is a full example to show off usage of HTML's built-in validation features:

<form>
<p>
<fieldset>

(c) ketabton.com: The Digital Library

<legend>Title<abbr title="This field is mandatory">*</abbr></legend>

<input type="radio" required name="title" id="r1" value="Mr"><label
for="r1">Mr.</label>

<input type="radio" required name="title" id="r2" value="Ms"><label
for="r2">Ms.</label>

</fieldset>
</p>
<p>
<label for="nl1">How old are you?</label>
<!-- The pattern attribute can act as a fallback for browsers which

don't implement the number input type but support the pattern attribute.
Please note that browsers that support the pattern attribute will make it
fail silently when used with a number field.
Its usage here acts only as a fallback -->
<input type="number" min="12" max="120" step="1" id="nl" name="age"
pattern="\d+">
</p>
<p>
<label for="tl1">What's your favorite fruit?<abbr title="This field is
mandatory">*</abbr></label>
<input type="text" id="t1" name="fruit" list="11" required
pattern="[BbJ]anana|[Cc]herry|[Aa]pple|[Ss]trawberry|[L1l]emon|[Oo]range">
<datalist id="11">
<option>Banana</option>
<option>Cherry</option>
<option>Apple</option>
<option>Strawberry</option>
<option>Lemon</option>
<option>Orange</option>
</datalist>
</p>
<p>
<label for="t2">What's your e-mail?</label>
<input type="email" id="t2" name="email">
</p>
<p>
<label for="t3">Leave a short message</label>
<textarea id="t3" name="msg" maxlength="140" rows="5"></textarea>
</p>
<p>
<button>Submit</button>
</p>
</form>
body {
font: lem sans-serif;
padding: O;
margin : 9;

}

form {
max-width: 200px;
margin: 9;
padding: © 5px;

}

(c) ketabton.com: The Digital Library

p > label {
display: block;
}

input[type=text],

input[type=email],

input[type=number],

textarea,

fieldset {

/* required to properly style form
elements on WebKit based browsers */
-webkit-appearance: none;

width : 100%;
border: 1px solid #333;
margin: 0;

font-family: inherit;
font-size: 90%;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

input:invalid {
box-shadow: @ © 5px 1px red;
}

input:focus:invalid {
outline: none;

}

Open in CodePenOpen in JSFiddle

Customized error messages

As seen in the examples above, each time the user tries to submit an invalid
form, the browser displays an error message. The way this message is
displayed depends on the browser.

These automated messages have two drawbacks:

« There is no standard way to change their look and feel with CSS.

« They depend on the browser locale, which means that you can have a page in
one language but an error message displayed in another language.

(c) ketabton.com: The Digital Library

French versions of feedback messages on an English page
Browser Rendering

What's your favorite fruit?*

Firefox 17 (Windows 7) h

Yeuillez compléter ce champ.

What's your favorite fruit?*

Chrome 22 (Windows 7)

& Veuillez renseigner ce champ.

What's your favorite fruit?*

Opera 12.10 (Mac OSX _
P () Ceci est un champ obligatoire J

To customize the appearance and text of these messages, you must use
JavaScript; there is no way to do it using just HTML and CSS.

HTML5 provides the constraint validation API to check and customize the state
of a form element. Among other things, it's possible to change the text of the
error message. Let's see a quick example:

<form>
<label for="mail"”>I would like you to provide me an e-mail</label>
<input type="email” id="mail" name="mail">
<button>Submit</button>

</form>

In JavaScript, you call the setcustomvalidity() method:

var email = document.getElementById("mail");

email.addEventListener("input", function (event) {
if (email.validity.typeMismatch) {
email.setCustomValidity ("I expect an e-mail, darling!");
} else {
email.setCustomValidity("");
}
})s

Open in CodePenOpen in JSFiddle

(c) ketabton.com: The Digital Library

Validating forms using JavaScript

If you want to take control over the look and feel of native error messages, or
If you want to deal with browsers that do not support HTML's built-in form
validation, you must use JavaScript.

The HTMLD5 constraint validation API

More and more browsers now support the constraint validation API, and it's
becoming reliable. This API consists of a set of methods and properties
available on each form element.

Constraint validation API properties

Property

validationMessage

validity

validity.customError

validity.patternMismatch

validity.rangeOverflow

validity.rangeUnderflow

validity.stepMismatch

validity.toolLong

Description

A localized message describing the validation constraints that the
any), or the empty string if the control is not a candidate for const
(willvalidate IS false), Or the element's value satisfies its constraint

A validitystate Object describing the validity state of the element.
Returns true if the element has a custom error; false otherwise.

Returns true if the element's value doesn't match the provided pat

If it returns true, the element will match the :invalid CSS pseudo-c

Returns true if the element's value is higher than the provided ma

If it returns true, the element will match the :invalid and :out-of-rar

Returns true if the element's value is lower than the provided mini

If it returns true, the element will match the :invalid and :out-of-rar

Returns true if the element's value doesn't fit the rules provided by
otherwise false .

If it returns true, the element will match the :invalid and :out-of-rar

Returns true if the element's value is longer than the provided ma
false

(c) ketabton.com: The Digital Library

Property

validity.typeMismatch

validity.valid

validity.valueMissing

willValidate

Description

If it returns true, the element will match the :invalid and :out-of-rar

Returns true if the element's value is not in the correct syntax; oth

If it returns true, the element will match the :inval1id CSS pseudo-c

Returns true if the element's value has no validity problems; false

If it returns true, the element will match the :vai1id CSS pseudo-cla
class otherwise.

Returns true if the element has no value but is a required field; fal

If it returns true, the element will match the :invalid CSS pseudo-c

Returns true if the element will be validated when the form is subr

Constraint validation API methods

Method

checkValidity()

setCustomValidity(message)

Description

Returns true if the element's value has no validity problems; fa1:
invalid, this method also causes an invalid event at the element

Adds a custom error message to the element; if you set a custo
element is considered to be invalid, and the specified error is di
JavaScript code to establish a validation failure other than those
constraint validation API. The message is shown to the user wh

If the argument is the empty string, the custom error is cleared.

For legacy browsers, it's possible to use a polyfill such as Hyperform to
compensate for the lack of support for the constraint validation API. Since
you're already using JavaScript, using a polyfill isn't an added burden to your
Web site or Web application's design or implementation.

Example using the constraint validation API

Let's see how to use this
HTML:

API to build custom error messages. First, the

(c) ketabton.com: The Digital Library

<form novalidate>
<p>
<label for="mail">
Please enter an email address:
<input type="email" id="mail" name="mail">

</label>
</p>
<button>Submit</button>
</form>

This simple form uses the novalidate attribute to turn off the browser's
automatic validation; this lets our script take control over validation. However,
this doesn't disable support for the constraint validation APl nor the application
of the CSS pseudo-class :valid, :invalid, :in-range and :out-of-range classes.
That means that even though the browser doesn't automatically check the
validity of the form before sending its data, you can still do it yourself and style
the form accordingly.

The aria-1ive attribute makes sure that our custom error message will be
presented to everyone, including those using assistive technologies such as

screen readers.
CSS

This CSS styles our form and the error output to look more attractive.

/* This is just to make the example nicer */

body {
font: lem sans-serif;
padding: 9;
margin : 0;
b
form {
max-width: 200px;
¥
p* {
display: block;
¥

input[type=email]{
-webkit-appearance: none;

width: 100%;
border: 1px solid #333;
margin: 0;

font-family: inherit;
font-size: 90%;

(c) ketabton.com: The Digital Library

-moz-box-sizing: border-box;
box-sizing: border-box;

}

/* This is our style for the invalid fields */
input:invalid{

border-color: #900;

background-color: #FDD;

}

input:focus:invalid {
outline: none;

¥
/* This is the style of our error messages */
.error {

width : 100%;

padding: 9;

font-size: 80%;

color: white;
background-color: #900;
border-radius: © @ 5px 5px;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

.error.active {
padding: ©.3em;
}

avaScri

The following JavaScript code handles the custom error validation.

// There are many ways to pick a DOM node; here we get the form itself and the email
// input box, as well as the span element into which we will place the error message.

var form = document.getElementsByTagName('form')[0];
var email = document.getElementById('mail');
var error = document.querySelector('.error');

email.addEventListener("input", function (event) {
// Each time the user types something, we check if the
// email field is valid.
if (email.validity.valid) {
// In case there is an error message visible, if the field
// is valid, we remove the error message.
error.innerHTML = ""; // Reset the content of the message
error.className = "error"; // Reset the visual state of the message
}
}, false);

(c) ketabton.com: The Digital Library

form.addEventListener("submit", function (event) {
// Each time the user tries to send the data, we check
// if the email field is valid.
if (lemail.validity.valid) {

// If the field is not valid, we display a custom

// error message.

error.innerHTML = "I expect an e-mail, darling!";

error.className = "error active";

// And we prevent the form from being sent by canceling the event
event.preventDefault();

}
}, false);

Here is the live result:

Open in CodePenOpen in JSFiddle
The constraint validation API gives you a powerful tool to handle form
validation, letting you have enormous control over the user interface above
and beyond what you can do just with HTML and CSS alone.

Validating forms without a built-in API

Sometimes, such as with legacy browsers or custom widgets, you will not be
able to (or will not want to) use the constraint validation API. In that case,
you're still able to use JavaScript to validate your form. Validating a form is
more a question of user interface than real data validation.

To validate a form, you have to ask yourself a few questions:

What kind of validation should | perform?
You need to determine how to validate your data: string operations, type
conversion, regular expressions, etc. It's up to you. Just remember that
form data is always text and is always provided to your script as strings.

What should I do if the form does not validate?
This is clearly a Ul matter. You have to decide how the form will behave:
Does the form send the data anyway? Should you highlight the fields
which are in error? Should you display error messages?

How can | help the user to correct invalid data?
In order to reduce the user's frustration, it's very important to provide as
much helpful information as possible in order to guide them in correcting
their inputs. You should offer up-front suggestions so they know what's
expected, as well as clear error messages. If you want to dig into form

(c) ketabton.com: The Digital Library

validation Ul requirements, there are some useful articles you should
read:

« SmashingMagazine: Form-Field Validation: The Errors-Only Approach
« SmashingMagazine: Web Form Validation: Best Practices and Tutorials
» Six Revision: Best Practices for Hints and Validation in Web Forms

« A List Apart: Inline Validation in Web Forms

Example that doesn't use the constraint validation API

In order to illustrate this, let's rebuild the previous example so that it works
with legacy browsers:

<form>
<p>
<label for="mail">
Please enter an email address:
<input type="text" class="mail" id="mail" name="mail">

</label>
<p>
<l-- Some legacy browsers need to have the "type attribute
explicitly set to “submit® on the "“button element -->
<button type="submit">Submit</button>
</form>

As you can see, the HTML is almost the same; we just removed the HTML
validation features. Note that ARIA is an independent specification that's not

specifically related to HTML5.
CsS

Similarly, the CSS doesn't need to change very much; we just turn
the :invalid CSS pseudo-class into a real class and avoid using the attribute
selector that does not work on Internet Explorer 6.

/* This is just to make the example nicer */
body {

font: lem sans-serif;

padding: O;

margin : 9;

}

form {
max-width: 200px;
}

p*A{
display: block;

(c) ketabton.com: The Digital Library

}

input.mail {
-webkit-appearance: none;

width: 100%;
border: 1px solid #333;
margin: 0;

font-family: inherit;
font-size: 90%;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

/* This is our style for the invalid fields */
input.invalid{

border-color: #900;

background-color: #FDD;

}

input:focus.invalid {
outline: none;

}
/* This is the style of our error messages */
.error {

width : 100%;

padding: 9;

font-size: 80%;

color: white;
background-color: #900;
border-radius: © © 5px 5px;

-moz-box-sizing: border-box;
box-sizing: border-box;

}

.error.active {
padding: ©.3em;
}

B -5

The big changes are in the JavaScript code, which needs to do much more of
the heavy lifting.

// There are fewer ways to pick a DOM node with legacy browsers
var form = document.getElementsByTagName('form')[0];
var email = document.getElementById('mail');

(c) ketabton.com: The Digital Library

// The following is a trick to reach the next sibling Element node in the DOM
// This is dangerous because you can easily build an infinite loop.

// In modern browsers, you should prefer using element.nextElementSibling

var error = email;

while ((error = error.nextSibling).nodeType != 1);

// As per the HTML5 Specification
var emailRegExp = /~[a-zA-Z0-9.!#$%&"'*+/=* ~{|}~-]+@[a-zA-Z20-9-]+(?:\.[a-2zA-Z0-9-
1+)*$/;

// Many legacy browsers do not support the addEventListener method.
// Here is a simple way to handle this; it's far from the only one.
function addEvent(element, event, callback) {
var previousEventCallBack = element["on"+event];
element["on"+event] = function (e) {
var output = callback(e);

// A callback that returns “false stops the callback chain
// and interrupts the execution of the event callback.
if (output === false) return false;

if (typeof previousEventCallBack === 'function') {
output = previousEventCallBack(e);
if(output === false) return false;
}
}
s

// Now we can rebuild our validation constraint

// Because we do not rely on CSS pseudo-class, we have to

// explicitly set the valid/invalid class on our email field

addEvent(window, "load", function () {
// Here, we test if the field is empty (remember, the field is not required)
// If it is not, we check if its content is a well-formed e-mail address.

var test = email.value.length === @ || emailRegExp.test(email.value);
email.className = test ? "valid" : "invalid";
}s

// This defines what happens when the user types in the field
addEvent(email, "input", function () {

var test = email.value.length === @ || emailRegExp.test(email.value);
if (test) {
email.className = "valid";
error.innerHTML = "";
error.className = "error";
} else {
email.className = "invalid";
}
})s

// This defines what happens when the user tries to submit the data
addEvent(form, "submit", function () {
var test = email.value.length === @ || emailRegExp.test(email.value);

(c) ketabton.com: The Digital Library

if (ltest) {
email.className
error.innerHTML
error.className

"invalid";
"I expect an e-mail, darling!";
"error active";

// Some legacy browsers do not support the event.preventDefault() method
return false;
I else {

email.className = "valid";
error.innerHTML = "";
error.className = "error";
)i
})s

The result looks like this:

Open in CodePenOpen in JSFiddle
As you can see, it's not that hard to build a validation system on your own.
The difficult part is to make it generic enough to use it both cross-platform and
on any form you might create. There are many libraries available to perform
form validation; you shouldn't hesitate to use them. Here are a few examples:

« Standalone library

o Validate.|s
o jQuery plug-in:
o Validation

Remote validation

In some cases it can be useful to perform some remote validation. This kind of
validation is necessary when the data entered by the user is tied to additional
data stored on the server side of your application. One use case for this is
registration forms, where you ask for a user name. To avoid duplication, it's
smarter to perform an AJAX request to check the availability of the user name
rather than asking the user to send the data, then send back the form with an
error.

Performing such a validation requires taking a few precautions:

« Itrequires exposing an APl and some data publicly; be sure it is not sensitive
data.

(c) ketabton.com: The Digital Library

« Network lag requires performing asynchronous validation. This requires some
Ul work in order to be sure that the user will not be blocked if the validation is
not performed properly.

As in the previous article, HTML forms can send an HTTP request declaratively. But
forms can also prepare an HTTP request to send via JavaScript. This article explores
ways to do that.

A form is not always a form

With open Web apps, it's increasingly common to use HTML forms other than
literal forms for humans to fill out — more and more developers are taking
control over transmitting data.

Standard HTML form submission loads the URL where the data was sent,
which means the browser window navigates with a full page load. Avoiding a

full page load can provide a smoother experience by hiding flickering and
network lag.

Many modern Uls only use HTML forms to collect input from the user. When
the user tries to send the data, the application takes control and transmits the
data asynchronously in the background, updating only the parts of the Ul that
require changes.

Sending arbitrary data asynchronously is known as AJAX, which stands for
"Asynchronous JavaScript And XML."

AJAX uses the xmLHttprequest (XHR) DOM object. It can build HTTP requests,
send them, and retrieve their results.

Note: Older AJAX techniques might not rely on xMLHttpRequest. For

example, [SONP combined with the eval() function. It works, but it's not recommended
because of serious security issues. The only reason to use this is for legacy browsers that
lack support for xMLHttpRequest or [SON, but those are very old browsers indeed! Avoid
such techniques.

Historically, xmLHttprequest was designed to fetch and send XML as an
exchange format. However, JSON superseded XML and is overwhelmingly
more common today.

(c) ketabton.com: The Digital Library

But neither XML nor JSON fit into form data request encoding. Form data
(application/x-www-form-urlencoded) IS made of URL-encoded lists of key/value
pairs. For transmitting binary data, the HTTP request is reshaped

INtO multipart/form-data.

If you control the front-end (the code that's executed in the browser) and the
back-end (the code which is executed on the server), you can send
JSON/XML and process them however you want.

But if you want to use a third party service, it's not that easy. Some services
only accept form data. There are also cases where it's simpler to use form
data. If the data is key/value pairs, or raw binary data, existing back-end tools
can handle it with no extra code required.

So how to send such data?

Sending form data

There are 3 ways to send form data, from legacy techniques to the

newer rormbataObject. Let's look at them in detail.

xMLHttpRequest IS the safest and most reliable way to make HTTP requests. To
send form data with xvmLHttprequest, prepare the data by URL-encoding it, and
obey the specifics of form data requests.

Note: To learn more about XMLHttpRequest, these articles may interest you: An

introductory article to AJAX and a more advanced tutorial about using XMLHttpRequest.
Let's rebuild our previous example:

<button type="button" onclick="sendData({test: 'ok'})">Click Me!</button>

As you can see, the HTML hasn't really changed. However, the JavaScript is
completely different:

function sendData(data) {
var XHR = new XMLHttpRequest();
var urlEncodedData = "";
var urlEncodedDataPairs = [];

(c) ketabton.com: The Digital Library

var name;

// Turn the data object into an array of URL-encoded key/value pairs.
for(name in data) {
urlEncodedDataPairs.push(encodeURIComponent(name) + '=' +
encodeURIComponent(data[name]));

}

// Combine the pairs into a single string and replace all %-encoded spaces to
// the '+' character; matches the behaviour of browser form submissions.
urlEncodedData = urlEncodedDataPairs.join('&").replace(/%26/g, '+');

// Define what happens on successful data submission
XHR.addEventListener('load', function(event) {
alert('Yeah! Data sent and response loaded.');

1)

// Define what happens in case of error
XHR.addEventListener('error', function(event) {
alert('Oops! Something goes wrong.');

1)

// Set up our request
XHR.open('POST', 'https://example.com/cors.php');

// Add the required HTTP header for form data POST requests
XHR.setRequestHeader ('Content-Type', 'application/x-www-form-urlencoded');

// Finally, send our data.
XHR.send(urlEncodedData);

}

Here's the live result;

Open in CodePenOpen in JSFiddle

Note: This use of XMLHttpRequest is subject to the same origin policy if you want to send
data to a third party web site. For cross-origin requests, you'll need CORS and HTTP
access control.

Using XMLHttpRequest and the FormData objec

Building an HTTP request by hand can be overwhelming. Fortunately, a
recent XMLHttpRequest specification provides a convenient and simpler way to
handle form data requests with the rFormbata object.

The rormpata Object can be used to build form data for transmission, or to get
the data within a form element to manage how it's sent. Note

that Formbata Objects are "write only”, which means you can change them, but
not retrieve their contents.

Using this object is detailed in Using FormData Obijects, but here are two
examples:

(c) ketabton.com: The Digital Library

Using a standalone FormData object

<button type="button" onclick="sendData({test: 'ok'})">Click Me!</button>

You should be familiar with that HTML sample.

function sendData(data) {
var XHR = new XMLHttpRequest();
var FD = new FormData();

// Push our data into our FormData object
for(name in data) {
FD.append(name, data[name]);

}

// Define what happens on successful data submission
XHR.addEventListener('load', function(event) {
alert('Yeah! Data sent and response loaded.');

1)

// Define what happens in case of error
XHR.addEventListener('error', function(event) {
alert('Oops! Something went wrong.');

1)

// Set up our request
XHR.open('POST', 'https://example.com/cors.php');

// Send our FormData object; HTTP headers are set automatically
XHR.send(FD) ;

}

Here's the live result:

Open in CodePenOpen in JSFiddle

Using FormData bound to a form element

You can also bind a rFormpata Object to a <form> element. This creates
a Formbata that represents the data contained in the form.
The HTML is typical:

<form id="myForm">
<label for="myName">Send me your name:</label>
<input id="myName" name="name" value="John">
<input type="submit" value="Send Me!">

(c) ketabton.com: The Digital Library

</fo

But

rm>

JavaScript takes over the form:

window.addEventListener("load"”, function () {

fu

}
/7

nction sendData() {
var XHR = new XMLHttpRequest();

// Bind the FormData object and the form element
var FD = new FormData(form);

// Define what happens on successful data submission
XHR.addEventListener("load", function(event) {
alert(event.target.responseText);

b)§

// Define what happens in case of error
XHR.addEventListener("error", function(event) {
alert('Oops! Something went wrong.');

b)§

// Set up our request
XHR.open("POST", "https://example.com/cors.php");

// The data sent is what the user provided in the form

XHR.send(FD) ;

Access the form element...

var form = document.getElementById("myForm");

//

...and take over its submit event.

form.addEventListener("submit", function (event) {

1))
1)

event.preventDefault();

sendData();

bl

Here's the live result;

You can even get more involved with the process by using the

form's elements property to get a list of all of the data elements in the form and
manually managing them one at a time. To learn more about that, see the
example in the Accessing the element list's contents in HTMLFormElement.elements.

Open in CodePenOpen in JSFiddle

Building a DOM in a hidden iframe

(c) ketabton.com: The Digital Library

The oldest way to asynchronously send form data is building a form with the
DOM API, then sending its data into a hidden <iframe>. TO access the result of
your submission, retrieve the content of the <iframe>.

Warning: Avoid using this technique. It's a security risk with third-party services
because it leaves you open to script injection attacks. If you use HTTPS, it can affect the
same origin policy, which can render the content of an <iframe>unreachable. However,
this method may be your only option if you need to support very old browsers.

Here is an example:

<button onclick="sendData({test: 'ok'})">Click Me!</button>
// Create the iFrame used to send our data

var iframe = document.createElement("iframe");

iframe.name = "myTarget";

// Next, attach the iFrame to the main document
window.addEventListener("load"”, function () {

iframe.style.display = "none";
document.body.appendChild(iframe);
})s

// This is the function used to actually send the data
// It takes one parameter, which is an object populated with key/value pairs.
function sendData(data) {
var name,
form = document.createElement("form"),
node = document.createElement("input");

// Define what happens when the response loads
iframe.addEventListener("load", function () {
alert("Yeah! Data sent.");

F)s

form.action "http://www.cs.tut.fi/cgi-bin/run/~jkorpela/echo.cgi";
form.target = iframe.name;

for(name in data) {
node.name = name;
node.value = data[name].toString();
form.appendChild(node.cloneNode());

}

// To be sent, the form needs to be attached to the main document.
form.style.display = "none";
document.body.appendChild(form);

form.submit();

// Once the form is sent, remove it.
document.body.removeChild(form);

(c) ketabton.com: The Digital Library

Here's the live result;

Open in CodePenOpen in JSFiddle

Dealing with binary data

If you use a rormbata Object with a form that includes <input

type="file"> Widgets, the data will be processed automatically. But to send
binary data by hand, there's extra work to do.

There are many sources for binary data on the modern Web: rilereader, canvas,
and WebRTC, for example. Unfortunately, some legacy browsers can't access
binary data or require complicated workarounds. Those legacy cases are out
of this article's scope. If you want to know more about the rilereader API,

read Using files from web applications.

Sending binary data with support for Formpata is straightfoward. Use

the append()method and you're done. If you have to do it by hand, it's trickier.
In the following example, we use the rilereader API to access binary data and
then build the multi-part form data request by hand:

<form id="myForm">
<p>
<label for="il">text data:</label>
<input id="11" name="myText" value="Some text data">
</p>
<p>
<label for="i2">file data:</label>
<input id="12" name="myFile" type="file">
</p>
<button>Send Me!</button>
</form>

As you see, the HTML is a standard <form>. There's nothing magical going on.
The "magic" is in the JavaScript:

// Because we want to access DOM node,
// we initialize our script at page load.
window.addEventListener('load', function () {

// These variables are used to store the form data
var text = document.getElementById("il");

(c) ketabton.com: The Digital Library

var file = {
dom : document.getElementById("i2"),
binary : null

hE

// Use the FileReader API to access file content
var reader = new FileReader();

// Because FileReader is asynchronous, store its

// result when it finishes to read the file

reader.addEventListener("load", function () {
file.binary = reader.result;

})s

// At page load, if a file is already selected, read it.
if(file.dom.files[0@]) {
reader.readAsBinaryString(file.dom.files[0]);

}

// If not, read the file once the user selects it.
file.dom.addEventListener("change", function () {
if(reader.readyState === FileReader.LOADING) {

reader.abort();

}

reader.readAsBinaryString(file.dom.files[0]);
})s

// sendData is our main function
function sendData() {
// If there is a selected file, wait it is read
// If there is not, delay the execution of the function
if(!file.binary && file.dom.files.length > @) {
setTimeout(sendData, 10);
return;

}

// To construct our multipart form data request,
// We need an XMLHttpRequest instance
var XHR = new XMLHttpRequest();

// We need a separator to define each part of the request
var boundary = "blob";

// Store our body request in a string.
var data = "";

// So, if the user has selected a file

if (file.dom.files[@]) {
// Start a new part in our body's request
data += "--" + boundary + "\r\n";

// Describe it as form data
data += 'content-disposition: form-data;

(c) ketabton.com: The Digital Library

// Define the name of the form data
+ 'name="" + file.dom.name + 5
// Provide the real name of the file
+ 'filename="" + file.dom.files[@].name + ""\r\n';
// And the MIME type of the file
data += 'Content-Type: ' + file.dom.files[@].type + '\r\n’;

// There's a blank line between the metadata and the data
data += '\r\n';

// Append the binary data to our body's request
data += file.binary + '\r\n';

}

// Text data is simpler
// Start a new part in our body's request
data += "--" + boundary + "\r\n";

// Say it's form data, and name it

data += 'content-disposition: form-data; name="
// There's a blank line between the metadata and the data
data += '\r\n';

// Append the text data to our body's request
data += text.value + "\r\n";

// Once we are done, "close" the body's request

data += + boundary + "--";

// Define what happens on successful data submission
XHR.addEventListener('load', function(event) {
alert('Yeah! Data sent and response loaded.');

F)s

// Define what happens in case of error
XHR.addEventListener('error', function(event) {
alert('Oops! Something went wrong.');

F)s

// Set up our request
XHR.open('POST', 'https://example.com/cors.php');

XHR.setRequestHeader('Content-Type', 'multipart/form-data; boundary=

// And finally, send our data.
XHR.send(data);

}

// Access our form...
var form = document.getElementById("myForm");

// ...to take over the submit event
form.addEventListener('submit’, function (event) {

+ text.name + ""\r\n';

// Add the required HTTP header to handle a multipart form data POST request

+ boundary) ;

(c) ketabton.com: The Digital Library

event.preventDefault();
sendData();
})s
})s

Here's the live result;

Open in CodePenOpen in JSFiddle

Conclusion

All web developers learn very quickly (and sometimes painfully) that the Web is a very
rough place for them. Our worst curse is legacy browsers. Okay, let's admit it, when we
said "legacy browser" we all have in mind old versions of Internet Explorer ... but it's far
from the only one. A one-year-old Firefox such as the ESR version is a legacy browser
too. And in the mobile world? When neither the browser nor the OS can be updated?
Yes, there are many older Android phones or iPhones that have stock browsers that are
not up to date. These are also legacy browsers.

Sadly, dealing with that wilderness is part of the job. Fortunately, there are a
few tricks to know that can help you to solve about 80% of the problems
caused by legacy browsers.

Learn about the issues

Actually, the most important thing is to read documentation about those
browsers to try to understand the common patterns. For example, CSS
support is the biggest issue with HTML forms in many cases. You are at the
right place to start. Just check the support of the elements (or DOM interface)
you want to use. MDN has compatibility tables available for many elements,
properties or APIs that can be used in a web page. But there are other
resources that can be amazingly helpful:

(c) ketabton.com: The Digital Library

Browser vendor documentatio

« Mozilla: You're in the right place, just browse MDN

e Microsoft; Internet Explorer Standards Support Documentation
« WebKit: Because there are several different editions of this engine, things are
a little trickier.

o The WebKit blog and Planet WebKit aggregate the best articles by WebKit core
developers.
o Chrome platform status site is also important.

o AS well as the Apple web site.

. Can | Use has information about support for cutting edge technologies.

« Quirks Mode is an amazing resource about browsers' compatibility. The mobile
part is one of the best available at the moment.

« Position Is Everything is the best resource available about rendering bugs in
legacy browsers and their work-arounds (if any).

« Mobile HTML5 has compatibility information for a wide range of mobile
browsers, not just the "top 5" (including Nokia, Amazon, and Blackberry).

Make things simple

Because HTML forms involves complex interaction, there is one rule of

thumb: keep it as simple as possible. There are so many cases where we want
forms that are "nicer" or "with advanced functionality”, but building efficient
HTML Forms is not a question of design or technology. Just as a reminder,
take the time to read this article about forms usability on UX For The Masses.
Graceful degradation is web developer's best friend

Graceful degradation and progressive enhancement are development patterns that
allow you to build great stuff by supporting a wide range of browsers at the
same time. When you build something for a modern browser, and you want to
be sure it will work, one way or another, on legacy browsers, you are
performing graceful degradation.

Let's see some examples related to HTML forms.

HTML input types

(c) ketabton.com: The Digital Library

The new input types brought by HTML5 are very cool because the way they
degrade is highly predictable. If a browser does not know the value of
the type attribute of an <input> element, it will fall back as if the value were text.

<label for="myColor">

Pick a color

<input type="color" id="myColor" name="color">
</label>

Chrome 24 Firefox 18

e Pick a color

Pick a color

CSS Attribute Selectors

The CSS Attribute selectors are very useful with HTML Forms but some legacy
browsers do not support it. In that case, it's customary to double the type with
an equivalent class:

<input type="number" class="number">
input[type=number] {
/* This can fail in some browsers */

}

input.number {
/* This will work everywhere */

}

Note that the following is useless (because it's redundant) and can fail in
some browsers:

input[type=number],
input.number {
/* This can fail in some browsers because if they do not understand
one of the selectors, they will skip the whole rule */

Form buttons

There are two ways to define buttons within HTML forms:

e The <input> element with its attribute type Set to the
values button, submit, resetOl image

(c) ketabton.com: The Digital Library

The <button> element
The <input> element can make things a little difficult if you want to apply some
CSS by using the element selector:

<input type="button" class="button" value="click me">
input {

/* This rule turns off the default rendering for buttons defined with an input
element */

border: 1px solid #CCC;

}

input.button {
/* This does NOT restore the default rendering */
border: none;

}

input.button {

/* That doesn't either! Actually there is no standard way to do it in any browser
*/

border: auto;

}

The <button> element suffers from two possible issues:

A bug in some old versions of Internet Explorer. When the user click the
button, it's not the content of the vaiue attribute that is sent, but the HTML
content available between the starting and ending tag of the <button> element.
This is an issue only if you want to send such a value, for example if the
processing of the data depends on which button the user clicks.

Some very old browsers does not use submit as the default value for

the typeattribute, so it's recommended to always set the

attribute type on <button>elements.

<!-- Clicking this button sends "Do A" instead of "A" in some cases -->
<button type="submit” name="IWantTo" value="A">

Do A
</button>

Choosing one solution or the other is up to you based on your project's
constraints.

Let go of CSS

The biggest issue with HTML Forms and legacy browsers is the support for
CSS. As you can see from the complexity of the Property compatibility table for
form widgets article, it's very difficult. Even if it's still possible to do a few
adjustments on text elements (such as sizing or font color), there are always
side effects. The best approach remains to not style HTML Form widgets at
all. But you can still apply styles to all the surrounding items. If you are a

(c) ketabton.com: The Digital Library

professional and if your client requires it, in that case, you can investigate
some hard techniques such as rebuilding widgets with JavaScript. But in that
case, do not hesitate to charge your client for such foolishness.

Feature detection and polyfills

While JavaScript is an awesome technology in modern browsers, legacy
browsers have many issues with it.

Unobtrusive JavaScrip

One of the biggest problems is the availability of APIs. For that reason, it's
considered best practice to work with "unobtrusive" JavaScript. It's a
development pattern that defines two requirements:

A strict separation between structure and behaviors.

If the code breaks, the content and the basic functionalities must remain
accessible and usable.

The principles of unobtrusive JavaScript (originally written by Peter-Paul Koch for
Dev.Opera.com and now moved to Docs.WebPlatform.org) describes these

ideas very well.

There are many cases where a good "polyfill* can help a lot by providing a
missing API. A polyfill is a bit of JavaScript that "fills in the holes" in the
functionality of legacy browsers. While they can be used to improve support
for any functionality, using them for JavaScript is less risky than for CSS or
HTML; there many cases where JavaScript can break (network issues, script
conflicts, etc.). But for JavaScript, if you work with unobstructive JavaScript in
mind, if polyfills are missing, it's no big deal.

The best way to polyfill missing APl is by using the Modernizr library and its
spin-off project: YepNope. Modernizr is a library that allows you to test the
availability of functionality in order to act accordingly. YepNope is a conditional
loading library.

Here is an example:

Modernizr.load({

(c) ketabton.com: The Digital Library

// This tests if your browser supports the HTML5 form validation API
test : Modernizr.formvalidation,

// If the browser does not support it, the following polyfill is loaded
nope : form-validation-API-polyfill.js,

// In any case, your core App file that depends on that API is loaded
both : app.js,

// Once both files are loaded, this function is called in order to initialize the
App.
complete : function () {
app.init();
}
})s

The Modernizr team conveniently maintains a list of great polyfills. Just pick
what you need.
Note: Modernizr has other awesome features to help you in dealing with unobstructive

JavaScript and graceful degradation techniques. Please read the Modernizr

documentation.

Pay attention to performance

Even though scripts like Modernizr are very aware of performance, loading a
200 kilobyte polyfill can affect the performance of your application. This is
especially critical with legacy browsers; many of them have a very slow
JavaScript engine that can make the execution of all your polyfills painful for
the user. Performance is a subject on its own, but legacy browsers are very
sensitive to it: basically, they are slow and the more polyfills they need, the
more JavaScript they have to process. So they are doubly burdened
compared to modern browsers. Test your code with legacy browsers to see
how they actually perform. Sometimes, dropping some functionality leads to a
better user experience than having exactly the same functionality in all
browsers. As a last reminder, just always think about the end users.

In this article, the user will learn how to use CSS with HTML forms to make them
(hopefully) more beautiful. Surprisingly, this can be a little bit tricky. For historical and
technical reasons, form widgets don't mesh well with CSS. Because of those difficulties,
many developers choose to build their own HTML widgets to gain control over their look
and feel. However, with modern browsers, web designers have more and more control
over the design of form elements. Let's dig in.

Why is it so hard to style form widgets with CSS?

(c) ketabton.com: The Digital Library

R N

In the early days of the Web—around 1995—form controls were added to
HTML in the HTML 2 specification. Due to the complexity of form widgets,
iImplementors chose to rely on the underlying operating system to manage
and render them.

A few years later CSS was created, and what was a technical necessity, that
IS, using native widgets to implement form controls, became a style
requirement. In the early days of CSS, styling form controls wasn't a priority.

Because users are accustomed to the visual appearance of their respective
platforms, browser vendors are reluctant to make form controls stylable; and
to this day it is still extremely difficult to rebuild all the controls to make them
stylable.

Even today, not a single browser fully implements CSS 2.1. Over time,
however, browser vendors have improved their support of CSS for form
elements, and even though there's a bad reputation for its usability, you can
now use CSS to style HTML forms.

At present, some difficulties remain when using CSS with forms. These
problems can be divided in three categories:

The good

Some elements can be styled with few if any problems across platforms.
These include the following structural elements:

<form>

<fieldset>

<label>

<output>

This also includes all text field widgets (both single-line and multi-line), and

buttons.

The bad

Some elements can rarely be styled, and may require some complicated
tricks, occasionally requiring advanced knowledge of CSS3.

These include the <1egend> element, but this cannot be positioned properly
across all platforms. Checkboxes and radio buttons also can't be styled

(c) ketabton.com: The Digital Library

directly, however, thanks to CSS3 you can work around

this. placeholder content is not stylable in any standard way, however, all
browsers that implement it also implement proprietary CSS pseudo-elements,
or pseudo-classes that let you style it.

We describe how to handle these more specific cases in the article Advanced
styling for HTML forms.

The ugly

Some elements simply can't be styled using CSS. These include: all advanced
user interface widgets, such as range, color, or date controls; and all the
dropdown widgets,

including <select>, <option>, <optgroup> and <datalist> elements. The file picker
widget is also known not to be stylable at all. The

New <progress> and <meter> elements also fall in this category.

The main issue with all these widgets, comes from the fact that they have a
very complex structure, and CSS is not currently expressive enough to style
all the subtle parts of those widgets. If you want to customize those widgets,
you have to rely on JavaScript to build a DOM tree you'll be able to style. We
explore how to do this in the article How to build custom form widgets.

Basic styling

To style elements that are easy to style with CSS, you shouldn't face any
difficulties, since they mostly behave like any other HTML element. However,
the user-agent style sheet of every browser can be a little inconsistent, so
there are a few tricks that can help you style them in an easier way.

Search fields

Search boxes are the only kind of text fields that can be a little tricky to style.

On WebKit based browsers (Chrome, Safari, etc.), you'll have to tweak it with
the -webkit-appearance proprietary property. We discuss this property further in

the article: Advanced styling for HTML forms.

Example

(c) ketabton.com: The Digital Library

<form>
<input type="search">

</form>

input[type=search] {
border: 1px dotted #999;
border-radius: 9;

-webkit-appearance: none;

}

Chrome 25 [Mac OSX

As you can see on this screenshot of the search field on Chrome, the two
fields have a border set as in our example. The first field is rendered without
using the -webkit-appearance property, whereas the second is rendered using -
webkit-appearance:none. This difference is noticeable.

CSS font and text features can be used easily with any widget (and yes, you
can use @font-face With form widgets). However, browsers' behaviors are often
inconsistent. By default, some widgets do not inherit font-family and font-

size from their parents. Many browsers use the system default appearance
instead. To make your forms' appearance consistent with the rest of your
content, you can add the following rules to your stylesheet:

button, input, select, textarea {
font-family : inherit;
font-size : 100%;

}

The screenshot below shows the difference; on the left is the default rendering
of the element in Firefox on Mac OS X, with the platform's default font style in
use. On the right are the same elements, with our font harmonization style
rules applied.

(c) ketabton.com: The Digital Library

| Which font do | use? | 4] | Which font do I use? |3
Which font do | use? Which font do I use?
Which font do I use? Which font do I use?
(_Which font do | use? { Which font do I use?)

L "

Firefox 16 / Mac OSX

There's a lot of debate as to whether forms look better using the system
default styles, or customized styles designed to match your content. This
decision is yours to make, as the designer of your site, or Web application.

Box model

All text fields have complete support for every property related to the CSS box
model (width, height, padding, margin, and bor‘der‘). As before, hOWGVGF, browsers
rely on the system default styles when displaying these widgets. It's up to you
to define how you wish to blend them into your content. If you want to keep
the native look and feel of the widgets, you'll face a little difficulty if you want to
give them a consistent size.

This is because each widget has their own rules for border, padding and
margin. So if you want to give the same size to several different widgets, you
have to use the box-sizing property:

input, textarea, select, button {
width : 150px;
margin: 0;

-webkit-box-sizing: border-box; /* For legacy WebKit based browsers */
-moz-box-sizing: border-box; /* For legacy (Firefox <29) Gecko based browsers */
box-sizing: border-box;

(c) ketabton.com: The Digital Library

'm 150px wide El I'm 150px wide =]
I'm 150px% wide I'm 150px wide
I'm 150px wide I'm 150px wide
A A
I'm 150px wide][| I'm 150px wide

Chrome 22 / Windows 7

In the screenshot above, the left column is built without box-sizing, while the
right column uses this property with the value border-box. Notice how this lets
us ensure that all of the elements occupy the same amount of space, despite

the Elatform‘s default rules for each kind of widget.

Positioning of HTML form widgets is generally not a problem; however, there
are two elements you should take special note of:

legend

The <1egend> element is okay to style, except for positioning. In every browser,
the <1egend> element is positioned on top of the top border of

its <fieldset> parent. There is absolutely no way to change it to be positioned
within the HTML flow, away from the top border. You can, however, position it
absolutely or relatively, using the positionproperty. But otherwise it is part of
the fieldset border.

Because the <1egend> element is very important for accessibility reasons, it will
be spoken by assistive technologies as part of the label of each form element
inside the fieldset, it's quite often paired with a title, and then hidden in an
accessible way. For example:

<fieldset>
<legend>Hi!</legend>
<h1>Hello</h1>

</fieldset>

CSS

legend {
width: 1px;
height: 1px;

(c) ketabton.com: The Digital Library

overflow: hidden;

}

textarea

By default, all browsers consider the <textarea> element to be an inline block,
aligned to the text bottom line. This is rarely what we actually want to see. To
change from inline-block tO block, it's pretty easy to use the disp1iay property.
But if you want to use it inline, it's common to change the vertical alignment:

textarea {
vertical-align: top;

}

Example

Let's look at a concrete example of how to style an HTML form. This will help
make a lot of these ideas clearer. We will build the following "postcard"
contact form:

(c) ketabton.com: The Digital Library

:f{"’ PM o} e
Y : 0 iy e
our message: ‘\- 14 }1#? ’? . uﬁ;;fﬂ et
This is whats ’wssw(z today MWEH'jm o
want to reate o high form |
with only WL smd
to: Mozilla
How do you think it looks? .
from: _Jérbyie

reply iy name(@is.me

15endynurnwmsagE=ﬁ>l

}l;ijjliffi$iiii;iilililii::jl;r;fi;}ii!fljsil?i!ljfjljrlj;rj!

| S ——

If you want to follow along with this example, make a local copy of our
postcard-start.html file, and follow the below instructions.

The HTML is only slightly more involved than the example we used in the first
article of this guide; it just has a few extra IDs and a title.

<form>
<hl>to: Mozilla</h1l>

<div id="from">

<label for="name">from:</label>

<input type="text" id="name" name="user_name">
</div>

<div id="reply">

<label for="mail">reply:</label>

<input type="email" id="mail" name="user_email">
</div>

(c) ketabton.com: The Digital Library

N =

<div id="message">

<label for="msg">Your message:</label>

<textarea id="msg" name="user_message"></textarea>
</div>

<div class="button">
<button type="submit”>Send your message</button>
</div>
</form>

Add the above code into the body of your HTML.

Organizing your assets

This is where the fun begins! Before we start coding, we need three additional
assets:

. The postcard background — download this image and save it in the same

directory as your working HTML file.

. A typewriter font: The "Secret Typewriter" font from fontsquirrel.com —

download the TTF file into the same directory as above.

. A handdrawn font: The "Journal" font from fontsquirrel.com — download the

TTF file into the same directory as above.
Your fonts need some more processing before you start:

Go to the fontsquirrel Webfont Generator.

. Using the form, upload both your font files and generate a webfont kit.

Download the kit to your computer.
Unzip the provided zip file.

Inside the unzipped contents you will find two .woff files and two .woff2 files.
Copy these four files into a directory called fonts, in the same directory as
before. We are using two different files for each font to maximise browser
comEatibiIity; see our Web fonts article for a lot more information.

Now we can dig into the CSS for the example. Add all the code blocks shown
below inside the <style> element, one after another.

First, we prepare the ground by defining our @font-face rules, all the basics on
the <body> element, and the <form> element:

@font-face {
font-family: 'handwriting’;
src: url('fonts/journal-webfont.woff2') format('woff2'),
url('fonts/journal-webfont.woff') format('woff');

(c) ketabton.com: The Digital Library

font-weight: normal;
font-style: normal;

}

@font-face {
font-family: ‘typewriter';
src: url('fonts/veteran_typewriter-webfont.woff2') format('woff2'),
url('fonts/veteran_typewriter-webfont.woff') format('woff');
font-weight: normal;
font-style: normal;

}

body {
font : 21px sans-serif;

padding : 2em;
margin : 0;

background : #222;
}

form {
position: relative;

width : 740px;
height : 498px;
margin : @ auto;

background: #FFF url(background.jpg);
}

Now we can position our elements, including the title and all the form
elements:

hl {
position : absolute;
left : 415px;
top : 185px;

font : lem "typewriter", sans-serif;

}

#from {
position: absolute;
left : 398px;
top : 235px;

}

#treply {
position: absolute;
left : 390px;
top : 285px;

(c) ketabton.com: The Digital Library

}

#tmessage {
position: absolute;
left : 20px;
top : 70px;

}

That's where we start working on the form elements themselves. First, let's
ensure that the <1abe1>s are given the right font:

label {
font : .8em "typewriter", sans-serif;

}

The text fields require some common rules. Simply put, we remove
their borders and backgrounds, and redefine their padding and margin:

input, textarea {

font ¢ .9em/1.5em "handwriting", sans-serif;
border : none;

padding : @ 10px;

margin : ©;

width : 240px;

background: none;

}

When one of these fields gains focus, we highlight them with a light grey,
transparent, background. Note that it's important to add the outiine property, in
order to remove the default focus highlight added by some browsers:

input:focus, textarea:focus {

background : rgba(e,0,0,.1);
border-radius: 5px;
outline : none;

}

Now that our text fields are complete, we need to adjust the display of the
single and multiple line text fields to match, since they won't typically look the
same using the defaults.

The single-line text field needs some tweaks to render nicely in Internet
Explorer. Internet Explorer does not define the height of the fields based on
the natural height of the font (which is the behavior of all other browsers). To
fix this, we need to add an explicit height to the field, as follows:

(c) ketabton.com: The Digital Library

input {

height: 2.5em; /* for IE */

vertical-align: middle; /* This is optional but it makes legacy IEs look better
*/
}

<textarea> elements default to being rendered as a block element. The two
Important things here are the resize and overflow properties. Because our
design is a fixed-size design, we will use the resize property to prevent users
from resizing our multi-line text field. The overfilow property is used to make the
field render more consistently across browsers. Some browsers default to the
value auto, while some default to the value scro11. In our case, it's better to be
sure every one will use auto:

textarea {
display : block;

padding : 10px;

margin : 10px © @ -10px;
width : 340px;

height : 360px;

resize : none;
overflow: auto;

}

The <button> element is really convenient with CSS; you can do whatever you
want, even using pseudo-elements:

button {
position : absolute;
left : 440px;
top : 360px;
padding : 5px;
font : bold .6em sans-serif;
border : 2px solid #333;
border-radius: 5px;
background : none;
cursor : pointer;

-webkit-transform: rotate(-1.5deg);
-moz-transform: rotate(-1.5deg);
-ms-transform: rotate(-1.5deg);
-o-transform: rotate(-1.5deg);
transform: rotate(-1.5deg);

}

button:after {

(c) ketabton.com: The Digital Library

content: " >>>";

}

button:hover,
button:focus {

outline . none;
background: #000;
color . #FFF;

¥

And voila!

Note: If your example does not work quite like you expected and you want to check it
against our version, you can find it on GitHub — see it running live (also see the source
code).

Advanced styling for HTML forms

Previous Overview: FormsNext

In this article, we will see how to use CSS with HTML forms to style some form
widgets that are difficult to customize. As we saw in the previous article, text
fields and buttons are perfectly okay with CSS. Now we will dig into the dark
part of HTML form styling.

Before going further, let's recall two kinds of HTML form widgets:

The bad

Elements that can hardly be styled, and require some complicated
tricks, sometimes involving advanced CSS3 knowledge.

The ugly
Forget using CSS to style these elements. At best, you'll be able to do a
few things, but it will not be reliable across browsers, and it will never be
possible to take full control over their appearance.

(c) ketabton.com: The Digital Library

CSS expressiveness

The main problem with form widgets, other than text fields and buttons, is that
In many cases, CSS is not expressive enough to properly style complex
widgets.

The recent evolution of HTML and CSS have extended CSS expressiveness:

css 2.1 was very limited and gave us only three pseudo-classes:
:active

:focus

:hover

CSs selector Level 3 added a few new pseudo-classes, related to HTML forms:
:enabled

:disabled

:checked

:indeterminate

CSs Basic Ul Level 3 also adds several further pseudo-classes, to describe the

state of a widget:

:default

:valid

:invalid

:in-range

:out-of-range

:required

:optional

:read-only

:read-write

CSS Selector Level 4 which is currently under active development and heavy

discussion, doesn't plan to add much to improve forms:

o :user-error WhicCh is just an improvement of the :invalid pseudo-class.
All of this is a good start, but there are two issues with this. First, some
browsers do not necessarily implement features beyond CSS 2.1. Second,
these are simply not good enough for styling complex widgets, such as date

pickers.

® O OO O ®© O O O e

® O O O O O O O 0 O

There are some experiments by browser vendors to extend CSS
expressiveness about forms, and in some cases it's good to know what's
available.

Warning: Even though these experiments are interesting, they're not
standard, which means it's not reliable. If you use them (and you probably

(c) ketabton.com: The Digital Library

often shouldn't), you do so at your own risk and you're doing something that

may be bad for the Web by using non-standard properties.
Mozilla CSS Extensions
:-moz-placeholder
:-moz-submit-invalid
:-moz-ui-invalid
:-moz-ui-valid

WebKit CSS Extensions
::-webkit-input-placeholder
And many more

Microsoft CSS Extensions
:-ms-input-placeholder

WebKit- (Chrome, Safari) and Gecko- (Firefox) based browsers offer the
highest degree of customization for HTML widgets. They are also available
cross-platform, so they need a mechanism to switch from widgets with native
look and feel, to widgets that are stylable by the user.

O € O O ®¢ O O O O e

To that end, they use a proprietary property: -webkit-appearance OF -moz-
appearance. Those properties are not standard and should not be used. In
fact, they even behave differently between WebKit and Gecko. However,
there is one value that is good to know: none. With this value, you are able to
gain (almost full) control over the style of a given widgets.

So, if you have trouble applying a style to an element, try using those
proprietary properties. We'll see some examples below, but the best known
use case for this property is for styling search fields on WebKit browsers:

<form>
<input type="search">
</form>
<style>
input[type=search] {
border: 1px dotted #999;
border-radius: 0;

-webkit-appearance: none;

}
</style>

Open in CodePenOpen in JSFiddle

Note: It's always hard to predict the future, when we talk about Web
technologies. Extending CSS expressiveness is difficult, and there is some
exploratory work with other specifications, such as Shadow DOM that offer
some perspective. The quest for the fully stylable form is far from over.

(c) ketabton.com: The Digital Library

Examples

Check boxes and radio buttons

Styling a check box or a radio button, by itself is kind of messy. For example,
the sizes of check boxes and radio buttons are not really meant to be
changed, and browsers can react very differently, if you try to do it.

A simple test case

Let's consider the following test case:

<input type="checkbox">
span {
display: inline-block;
background: red;

}

input[type=checkbox] {
width : 1@0px;
height: 1@0px;

}

Here is the way different browsers handle this:

Browser Rendering

Firefox 57 (Mac OSX)

Firefox 57 (Windows 10)

(c) ketabton.com: The Digital Library

Browser Rendering

Chrome 63 (Mac OSX)

Chrome 63 (Windows 10)

Opera 49 (Mac 0OSX)

Internet Explorer 11 (Windows 10)

Edge 16 (Windows 10)

B I

A more complex example

(c) ketabton.com: The Digital Library

Because Opera and Internet Explorer do not have features such as -webkit-
appearanceOl -moz-appearance, USING them is not suitable. Fortunately, we are in a
case where CSS is expressive enough to find solutions. Let's take a common
example:

<form>
<fieldset>
<p>
<input type="checkbox" id="first" name="fruit-1" value="cherry">
<label for="first">I like cherry</label>
</p>
<p>
<input type="checkbox" id="second” name="fruit-2" value="banana" disabled>
<label for="second”>I can't like banana</label>
</p>
<p>
<input type="checkbox" id="third" name="fruit-3" value="strawberry">
<label for="third">I like strawberry</label>
</p>
</fieldset>
</form>

with some basic styling:

body {
font: lem sans-serif;

}

form {
display: inline-block;

padding: O;
margin : 0;
}
fieldset {

border : 1px solid #CCC;
border-radius: 5px;
margin : 0;
padding: 1lem;

b

label {
cursor : pointer;

}

p i
margin : 0;

}

p+p {
margin : .5em © O;

(c) ketabton.com: The Digital Library

}

Now, let's style this to have a custom check box.

The plan is to replace the native checkbox with an image of our own. First, we
need to prepare an image with all the states required by a check box. Those
states are: unchecked, checked, disabled unchecked, and disabled checked.
This image will be used as a CSS sprite:

Let's start by hiding the original check boxes. We will simply move them
outside the page viewport. There are two important things to consider here:

« Do not use display:none to hide the check box, because as we'll see below, we
need the check box to be available to the user. With display:none, the check
box is no longer accessible to the user, which means that it's impossible to
check or uncheck it.

« We will use some CSS3 selectors to perform our styling. In order to support
legacy browsers, we can prefix all our selectors with the :root pseudo-class. In
the current state of implementation, all browsers that support what we need
also support the :root pseudo-class, but others don't. This is an example of a
convenient way to filter legacy Internet Explorer. Those browsers will see the
regular check box while modern browsers will see the custom check box.

:root input[type=checkbox] {
/* original check box are push outside the viewport */
position: absolute;
left: -1000em;

}

Now that we're rid of the native check box, let's add our own. To that end, we
will use the :before pseudo element of the <1abe1> element that follows the
original check box. So in the following selector, we use the attribute selector to
target the check box, then we use the adjacent sibling selector to target

the 1abe1 following the original check box. Finally, we access

the :before pseudo-element and style it to have it display our custom
unchecked check box.

:root input[type=checkbox] + label:before {
content: "";

(c) ketabton.com: The Digital Library

display: inline-block;

width : 16px;

height : 16px;

margin : © .5em © 0;

background: url("https://developer.mozilla.org/files/4173/checkbox-sprite.png") no-
repeat 0 9;

/* The following is used to adjust the position of
the check boxes on the text baseline */

vertical-align: bottom;
position: relative;
bottom: 2px;

}

We use the :checked and :disabled pseudo-classes on the original check box to
change the state of our custom check box accordingly. Because we're using a
CSS sprite, all we need to do is change the position of the background.

:root input[type=checkbox]:checked + label:before {
background-position: @ -16px;

}

:root input[type=checkbox]:disabled + label:before {
background-position: @ -32px;

}

:root input[type=checkbox]:checked:disabled + label:before {
background-position: @ -48px;
}

The last (but very important) thing: when a user uses the keyboard to navigate
from one form widget to another, each widget should be focused visually.
Because we hide the native check boxes, we have to implement this feature
ourselves, to let the user know where they are in the form. The following CSS
implements the focusing of our custom checkboxes.

:root input[type=checkbox]:focus + label:before {
outline: 1px dotted black;

}

You can see the live result:

Open in CodePenOpen in JSFiddle

Dealing with the select nightmare

(c) ketabton.com: The Digital Library

The <select> element is considered an "ugly" widget, because it's impossible to
style it consistently cross platform. However, some things are possible. Rather
than a long explanation, let's look at an example:

<select>

</select>
select {
width

}
option {

color

}

padding :
. red;

<option>Cherry</option>
<option>Banana</option>
<option>Strawberry</option>

: 80px;
padding :

10px;

5px;

The following table shows how different browsers handle this, in two cases.
The first two columns are just the above example. The second two columns
use additional custom CSS, to gain more control on the widget's appearance:

}

select, option {
-webkit-appearance :
WebKit/Chromium */
-moz-appearance :

/* To gain control over the appearance on and Trident (IE)
Note that it also works on Gecko and has partial effects on WebKit */
background :

none;

none; /* To gain control over the appearance on

none; /* To gain control over the appearance on Gecko */

Browser

Firefox 57 (Mac OSX)

Regular rendering

closed open closed

Cher m |
B Banana Cherry

Strawberry

(c) ketabton.com: The Digital Library

Browser

Firefox 57 (Windows 10)

Chrome 63 (Mac OSX)

Chrome 63 (Windows 10)

Opera 49 (Mac OSX)

IE11 (Windows 10)

Edge 16 (Windows 10)

Regular rendering

closed

Cherry =~

Cherry

Cherr ¥

Cherry

Cherr v

Chemr

open

Banana

Strawberry

v Cherry

Banana
Strawberry

Chern v

Banana
Strawberry

 Cherry

Banana
Strawberry

I —

Banana
Strawberry

Cherry

Banana
Strawberry

As you can see, even with the help of the -*-appearance properties, there are

still some remaining issues:

closed

| Cherry

Cherry

Cherry

Cherry ‘

Ch err

;

Cherry

(c) ketabton.com: The Digital Library

« The padding property is handled inconsistently across operating systems and
browsers.
« Legacy Internet Explorer does not allow smooth styling.

« Firefox does not have a way to style the dropdown arrow.

« If you want to style the <option> elements inside the dropdown list, the behavior
of Chrome and Opera vary from one system to another.
Also, with our example, we are only using three CSS properties. Imagine the
mess when even more CSS properties are considered. As you can see, CSS
IS not suitable for changing the look and feel of these widgets consistently, but
it still lets you tweak some things. As long as you're willing to live with
differences, from one browser and one operating system to another.

We will help understand which properties are suitable in the next
article: Properties compatibility table for form widgets.

The road to nicer forms: useful libraries and polyfills

Although CSS is expressive enough for check boxes and radio button, it is far
from true for more advanced widgets. Even though a few things are possible
with the <select>element, the file widget cannot be styled at all. The same goes
for the date picker, etc.

If you want to gain full control over form widgets, you have no choice but to
rely on JavaScript. In the article How to build custom form widgets we will see
how to do it on our own, but there are some very useful libraries out there that
can help you:

« Uni-form is a framework that standardizes form markup, styling it with CSS. It
also offers a few additional features when used with jQuery, but that's
optional.

« Formalize IS an extension to common JavaScript frameworks (such as jQuery,
Dojo, YUI, etc.) that helps to normalize and customize your forms.

« Niceforms is a standalone JavaScript method that provides complete
customization of web forms. You can use some of the built in themes, or
create your own.

The following libraries aren't just about forms, they have very interesting
features for dealing with HTML forms:

(c) ketabton.com: The Digital Library

[Query Ul offers some very interesting advanced and customizable widgets,
such as date pickers (with special attention given to accessibility).

Twitter Bootstrap can be really helpful if you want to normalize your forms.
WebsShim is a huge tool that can help you deal with browser HTML5 support.
The web forms part can be really helpful.

Remember that binding CSS and JavaScript can have side effects. So if you
choose to use one of those libraries, you should always have fallback style
sheets in case the script fails. There are many reasons why scripts may fail,
especially in the mobile world, and you need to design your Web site or app to
handle these cases as best as possible.

The following compatibility tables try to summarize the state of CSS support for HTML
forms. Due to the complexity of CSS and HTML forms, these tables can't be considered
a perfect reference. However, they will give you good insight into what can and can't be
done, which will help you learn how to do things.

How to read the tables

For each property, there are four possible values:

YES
There's reasonably consistent support for the property across browsers.
You may still face strange side effects in certain edge cases.

PARTIAL
While the property works, you may frequently face strange side effects
or inconsistencies. You should probably avoid these properties unless
you master those side effects first.

NO
The property simply doesn't work or is so inconsistent that it's not
reliable.

N.A.
The property has no meaning for this type of widget.

Rendering

(c) ketabton.com: The Digital Library

For each property there are two possible renderings:

N (Normal)
Indicates that the property is applied as it is

T (Tweaked)
Indicates that the property is applied with the extra rule below:

*{
/* This turn off the native look and feel on WebKit based browsers */
-webkit-appearance: none;

/* This turn off the native look and feel on Gecko based browsers */
-moz-appearance: none;

/* This turn off the native look and feel on several different browsers
including Opera, Internet Explorer and Firefox */
background: none;

}

Compatibility tables

Global behaviors

Some behaviors are common to many browsers at a global level:

border, background, border-radius, height
Using one of these properties can partially or fully turn off the native
look & feel of widgets on some browsers. Be careful when you use
them.

line-height
This property is supported inconsistently across browsers and you
should avoid it.

text-decoration
This property is not supported by Opera on form widgets.

(c) ketabton.com: The Digital Library

text-overflow

Opera, Safari, and IE9 do not support this property on form widgets.

text-shadow

Opera does not support text-shadow ON form widgets and IE9 does not

support it at all.
Text fields

Property N
CSS box model

width Yes
height Partialltl2!
border Partialltl2!
margin Yes
padding Partialltl2!

Text and font

color[l] Yes
font Yes
letter-spacing Yes
text-align Yes

text-decoration Partial

T

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Partial

Note

WebKit browsers (mostly on Mac OSX and iOS) use
search fields. Therefore, it's required to use -webkit-
apply this property to search fields.

On Windows 7, Internet Explorer 9 does not apply t
unless background:none IS applied.

WebKit browsers (mostly on Mac OSX and iOS) use
search fields. Therefore, it's required to use -webkit-
apply this property to search fields.

On Windows 7, Internet Explorer 9 does not apply tt
unless background:none IS applied.

WebKit browsers (mostly on Mac OSX and iOS) use
search fields. Therefore, it's required to use -webkit-
apply this property to search fields.

On Windows 7, Internet Explorer 9 does not apply t
unless background:none IS applied.

If the border-color property is not set, some WebKit b
the color property to the border as well as the font ol

See the note about 1ine-height

See the note about Opera

(c) ketabton.com: The Digital Library

Property

text-indent

text-overflow
text-shadow

text-transform

Border and background

background

border-radius Partialltl2!

box-shadow

Property
CSS box model

width

height

border
margin

padding

Text and font

color

font

N

Partial!

Partial
Partial

Yes

Partial!

No

Yes

Partial!

Partial
Yes

Partial!

Yes

Yes

T

Partial!

Partial
Partial

Yes

Yes

Yes

Partial!

Yes

Yes

Yes
Yes

Yes

Yes

Yes

Note

IE9 supports this property only on <textarea>S, Where
single line text fields.

WebKit browsers (mostly on Mac OSX and iOS) use
search fields. Therefore, it's required to use -webkit-
apply this property to search fields. On Windows 7,
apply the border unless background:none IS applied.

WebKit browsers (mostly on Mac OSX and iOS) use
search fields. Therefore, it's required to use -webkit-:
apply this property to search fields. On Windows 7,
apply the border unless background:none IS applied.
On Opera the border-radius property is applied only i

IE9 does not support this property.

Note

This property is not applied on WebKit based brows

This property is not applied on WebKit based brows

See the note about 1ine-height.

(c) ketabton.com: The Digital Library

Property N T Note
letter-spacing Yes Yes
text-align No No
text-decoration Partial Yes
text-indent Yes Yes
text-overflow No No
text-shadow Partial Partial
text-transform Yes Yes

Border and background

background Yes Yes
border-radius Yesl] Yesltl On Opera the border-radius property is applied only i
box-shadow No Partiall! IE9 does not support this property.

On browsers that implement the number widget, there is no standard way to
change the style of spinners used to change the value of the field. It is worth
noting that the spinners on Safari are outside the field.

Property N T Note

CSS box model

width Yes Yes

height Partiall! Partiall On Opera, the spinners are zoomed in, which can hi
border Yes Yes

margin Yes Yes

padding Partiall Partiall! On Opera, the spinners are zoomed in, which can hi

Text and font
color Yes Yes

font Yes Yes See the note about 1ine-height.

(c) ketabton.com: The Digital Library

Property N T Note
letter-spacing Yes Yes
text-align Yes Yes

text-decoration Partial Partial

text-indent Yes Yes
text-shadow Partial Partial
text-transform N.A. N.A.

Border and background

background

border-radius -

Supported but there is too much inconsistency betwe

box-shadow

Check boxes and radio buttons

Property N T Note
CSS box model

width -- Some browsers add extra margins and others stretch

height -- Some browsers add extra margins and others stretch
Yes Yes

margin

Text and font

color N.A. N.A.
font N.A. N.A.
letter-spacing N.A. N.A.

text-align N.A. N.A.

(c) ketabton.com: The Digital Library

Property

text-decoration
text-indent
text-overflow
text-shadow

text-transform

Border and background

background
border-radius

box-shadow

N

N.A.
N.A.
N.A.
N.A.
N.A.

No
No
No

Select boxes (single line)
Firefox does not provide any way to change the down arrow on
the <select> element.

Property
CSS box model

width

height
border
margin

padding

Text and font

color

N

Partial!

No
Partial
Yes
Nolt

Partial!

T
N.A.
N.A.
N.A.
N.A.
N.A.

No
No
No

T

Partial!

Yes
Yes
Yes

Partial?

Partial!

Note

Note

This property is okay on the <select> element, but i
the <option> Or <optgroup>elements.

The property is applied, but in an inconsistent way
OSX.

The property is well applied on the <select> elemer
handled on <option> and <optgroup> elements.

On Mac OSX, WebKit based browsers do not supj
widgets and they, along with Opera, do not suppol
0N <option> and <optgroup> elements.

(c) ketabton.com: The Digital Library

Property N
font Partiall]
letter-spacing Partialll!
text-align Nolll
text-decoration Pgrtig|l!
text-indent Partialltl2!
text-overflow No
text-shadow Partial!2]
text-transform Partialll!

Border and background

background
border-radius

box-shadow

Partial!
Partial!

No

Select boxes (multiline)

Property
CSS box model

width
height
border

margin

N

Yes
Yes
Yes

Yes

T Note

Partiall On Mac OSX, WebKit based browsers do not sup
widgets and they, along with Opera, do not suppol
0N <option> and <optgroup> elements.

Partiall IE9 does not support this property on <select>, <opt
WebKit based browsers on Mac OSX do not supp
oNn <option> and <optgroup> elements.

No |E9 on Windows 7 and WebKit based browsers on
property on this widget.

Partiall¥ Only Firefox provides full support for this property.
property at all and other browsers only support it C

Partialll’l Most of the browsers only support this property on
IE9 does not support this property.
No
Partial™2l Most of the browsers only support this property on
IE9 does not support this property.

Partiall Most of the browsers only support this property on

Partiall!l

Partiall Most of the browsers only support this property on

Partial!]

T Note

Yes

Yes

Yes

Yes

(c) ketabton.com: The Digital Library

Property N T Note

padding Partiall Partiall! Opera does not support padding-top and padding-bottom
Text and font

color Yes Yes

font Yes Yes See the note about 1ine-height.

letter-spacing Partialll Partial? 1E9 does not support this property on <selects, <option:
WebKit based browsers on Mac OSX do not support 1
on <option> and <optgroup> elements.

text-align IE9 on Windows 7 and WebKit based browser on Mac
property on this widget.
text-decoration -- Only supported by Firefox and IE9+.

text-transform Partiallll Partial! Most of the browsers only support this property on the

Border and background
background Yes Yes

border-radius Yesll Yesll On Opera the border-radius property is applied only if
box-shadow - Partiall! 1E9Q does not support this property.

Property N T
CSS box model

width
height
border

margin

(c) ketabton.com: The Digital Library

Property
padding

Text and font

color

font

letter-spacing

text-align

text-decoration

text-indent

text-overflow

text-shadow

text-transform

Border and background
background

border-radius

box-shadow

Property N T Note
CSS box model

width

height
border
margin

padding

Text and font

color Yes Yes

(c) ketabton.com: The Digital Library

Property N T Note

-- Supported, but there is too much inconsistency betw

letter-spacing Partialtl Partiall! Many browsers apply this property to the select butto

text-indent Partiall! Partiall* It acts more or less like an extra left margin outside t

Border and background

-- Supported, but there is too much inconsistency betwe
border-radius --
box-shadow - Partiall! IE9 does not support this property.

Many properies are supported but there is to much inconstency between
browsers to be reliable.

font

background

Property N T
CSS box model

width
height
border
margin
padding

Text and font

color

(c) ketabton.com: The Digital Library

Property

font
letter-spacing
text-align
text-decoration
text-indent
text-overflow
text-shadow
text-transform
Border and background
background
border-radius

box-shadow

Color pickers

There is currently not enough implementation to get realiable behaviors.

Property N T Note

CSS box model

width Yes Yes

height - Yes Opera handles this like a select widget with the same restr
border Yes VYes

margin Yes Yes

padding - Yes Opera handles this like a select widget with the same restr

Text and font
color N.A. N.A.
font N.A. N.A.

(c) ketabton.com: The Digital Library

Property N T Note

letter-spacing N.A. N.A.

text-align N.A. N.A.

text-decoration N.A. N.A.

text-indent N.A. N.A.
text-overflow N.A. N.A.
text-shadow N.A. N.A.

text-transform N.A. N.A.

Border and background

background Noltl Nolt!
border-radius Noll Noftl Supported, but there is too much inconsistency between b
box-shadow Nol! Nofll

Meters and progress

There is currently not enough implementation to get realiable behaviors.

Property N T Note

CSS box model

width Yes Yes

height Yes Yes

border Partial Yes

margin Yes Yes

padding Yes Partial@ Chrome hides the <progress> and <meter> element when t

on a tweaked element.
Text and font
color N.A. N.A.
font N.A. N.A.

letter-spacing N.A. N.A.

(c) ketabton.com: The Digital Library

Property N T Note
text-align N.A. N.A.
text-decoration N A N.A.
text-indent N.A. N.A.
text-overflow N.A. N.A.
text-shadow N.A. N.A.
text-transform = N.A. N.A.

Border and background

background Nol! Nofll
border-radius Nolll Noll Supported, but there is too much inconsistency betwee
box-shadow Nol! Noltl

There is no standard way to change the style of the range grip and Opera has
no way to tweak the default rendering of the range widget.

Property N T Note

CSS box model

width Yes Yes

height Partial! Partial Chrome and Opera add some extra space around the

Windows 7 stretches the range grip.

border No Yes
margin Yes Yes
padding Partiall ~ Yes The padding is applied, but has no visual effect.

Text and font
color N.A. N.A.
font N.A. N.A.

letter-spacing N.A. N.A.

(c) ketabton.com: The Digital Library

Property N T Note
text-align N.A. N.A.
text-decoration N A, N.A.
text-indent N.A. N.A.
text-overflow N.A. N.A.
text-shadow N.A. N.A.
text-transform N.A. N.A.

Border and background

background Noll Nol

border-radius Nolll Noll Supported, but there is too much inconsistency betwe
box-shadow Nol] Nolll

Property N T Note

CSS box model

width Yes Yes

height Yes Yes

border Yes Yes

margin Yes Yes

padding Yes Yes

Text and font

color N.A. N.A.
font N.A. N.A.
letter-spacing N.A. N.A.
text-align N.A. N.A.
text-decoration N.A. N.A.

text-indent N.A. N.A.

(c) ketabton.com: The Digital Library

Property N T Note
text-overflow N.A. N.A.
text-shadow N.A. N.A.
text-transform N.A. N.A.

Border and background
background Yes Yes

border-radius Partial!] Partiall!] IE9 does not support this prop

box-shadow Partial!] Partiall!] IE9 does not support this prop

Get more e-books from www.ketabton.com
Ketabton.com: The Digital Library

